Abstract
A straightforward total synthesis of the potent anticancer agent
(-)-chaetominine is reported. Central to this synthesis
was a biomimetic oxidative cyclization of a tryptophanyl-alanine
dipeptide, which provided a fully elaborated 1,2,3,4-tetrahydropyrido[2,3-b ]indole. Reduction of this
intermediate followed by spontaneous cyclization and installation
of the side chain provided synthetic chaetominine in a nine-step
sequence in 14% overall yield starting from commercially
available, inexpensive starting materials.
Key words
alkaloids - total synthesis - oxidative cyclization - anticancer agents - peptides
References <A NAME="RC02909SS-1">1 </A>
See: http://www.who.int/cancer.
See:
<A NAME="RC02909SS-2A">2a </A>
Shu Y.-Z.
J.
Nat. Prod.
1998,
61:
1053
<A NAME="RC02909SS-2B">2b </A>
MacCoss M.
Baillie TA.
Science
2004,
303:
1810
<A NAME="RC02909SS-2C">2c </A>
Lesney MS.
Today’s Chemist at Work
2004,
January:
27
<A NAME="RC02909SS-2D">2d </A>
Butler MS.
Nat. Prod. Rep.
2005,
22:
162
<A NAME="RC02909SS-2E">2e </A>
Wilson RM.
Danishefsky SJ.
J.
Org. Chem.
2006,
71:
8329
<A NAME="RC02909SS-3">3 </A>
Newman DJ.
Cragg GM.
J. Nat. Prod.
2007,
70:
461
<A NAME="RC02909SS-4">4 </A>
Jiao RH.
Xu S.
Liu JY.
Ge HM.
Ding H.
Xu C.
Zhu HL.
Tan RX.
Org. Lett.
2006,
8:
5709
<A NAME="RC02909SS-5">5 </A>
Snider BB.
Wu X.
Org. Lett.
2007,
9:
4913
<A NAME="RC02909SS-6A">6a </A> For
the total synthesis of related natural products, the kapakahines,
see:
Newhouse T.
Lewis CA.
Baran PS.
J.
Am. Chem. Soc.
2009,
131:
6360
<A NAME="RC02909SS-6B">6b </A> During the preparation
of this manuscript, a third total synthesis of chaetominine was
reported. See:
Malgesini B.
Forte B.
Borghi D.
Quartieri F.
Gennari C.
Papeo G.
Chem. Eur. J.
2009,
15:
DOI: 10.1002/chem.200900793
<A NAME="RC02909SS-7A">7a </A>
Toumi M.
Couty F.
Evano G.
Angew. Chem. Int. Ed.
2007,
46:
572
<A NAME="RC02909SS-7B">7b </A>
Toumi M.
Couty F.
Evano G.
J.
Org. Chem.
2007,
72:
9003
<A NAME="RC02909SS-7C">7c </A>
Toumi M.
Couty F.
Evano G.
Synlett
2008,
29
<A NAME="RC02909SS-7D">7d </A>
Coste A.
Toumi M.
Wright K.
Razafimahaléo V.
Couty F.
Marrot J.
Evano G.
Org. Lett.
2008,
10:
3841
<A NAME="RC02909SS-7E">7e </A>
Evano G.
Blanchard N.
Toumi M.
Chem.
Rev.
2008,
108:
3054
<A NAME="RC02909SS-7F">7f </A>
Toumi M.
Rincheval V.
Young A.
Gergeres D.
Turos E.
Couty F.
Mignotte B.
Evano G.
Eur. J. Org. Chem.
2009,
3368
<A NAME="RC02909SS-7G">7g </A>
Evano G.
Toumi M.
Coste A.
Chem.
Commun.
2009,
4166
<A NAME="RC02909SS-8">8 </A>
Toumi M.
Marrot J.
Couty F.
Evano G.
Org. Lett.
2008,
10:
5027
For examples, see:
<A NAME="RC02909SS-9A">9a </A>
Ohno M.
Spande TF.
Witkop B.
J.
Am. Chem. Soc.
1968,
90:
6521
<A NAME="RC02909SS-9B">9b </A>
Savige WE.
Aust. J. Chem.
1975,
28:
2275
<A NAME="RC02909SS-9C">9c </A>
Kamenecka TM.
Danishefsky SJ.
Chem.
Eur. J.
2001,
7:
41
<A NAME="RC02909SS-9D">9d </A>
May JP.
Fournier P.
Pellicelli J.
Partick BO.
Perrin DM.
J. Org. Chem.
2005,
70:
8424
<A NAME="RC02909SS-9E">9e </A>
Depew KM.
Marsden SP.
Zatorska D.
Zatorski A.
Bornmann WG.
Danishefsky SJ.
J.
Am. Chem. Soc.
1999,
121:
11953
<A NAME="RC02909SS-9F">9f </A>
Hewitt PR.
Cleator E.
Ley SV.
Org. Biomol. Chem.
2004,
2:
2415
<A NAME="RC02909SS-9G">9g </A>
Schiavi BM.
Richard DJ.
Joullié MM.
J. Org. Chem.
2002,
67:
620
<A NAME="RC02909SS-9H">9h </A>
Movassaghi M.
Schmidt MA.
Ashenhurst JA.
Angew. Chem. Int. Ed.
2008,
47:
1485
<A NAME="RC02909SS-10">10 </A>
Bergman J.
Engqvist R.
Stålhandske C.
Wallberg H.
Tetrahedron
2003,
59:
1033
<A NAME="RC02909SS-11">11 </A>
He L.
Yang L.
Castle SL.
Org.
Lett.
2006,
8:
1165
<A NAME="RC02909SS-12">12 </A>
Davis FA.
Towson JC.
Vashi DB.
ThimmaReddy R.
McCauley JP.
Harakal ME.
Gosciniak DJ.
J. Org.
Chem.
1990,
55:
1254
For related cleavage of double
bonds in indoles with MCPBA, see:
<A NAME="RC02909SS-13A">13a </A>
Witkop B.
Fiedler H.
Ann. Chim.
1947,
558:
91
<A NAME="RC02909SS-13B">13b </A>
Hino T.
Yamaguchi H.
Matsuki K.
Nakano K.
Sodeoka M.
Nakagawa M.
J. Chem. Soc., Perkin Trans.
2
1983,
141
<A NAME="RC02909SS-13C">13c </A>
Astolfi P.
Greci L.
Rizzoli C.
Sgarabotto P.
Marrosu G.
J.
Chem. Soc., Perkin Trans. 2
2001,
1634
For examples of photooxidation
of indoles with oxygen, see:
<A NAME="RC02909SS-14A">14a </A>
Nakagawa M.
Watanabe H.
Kodato S.
Okajima H.
Hino T.
Flippen JL.
Witkop B.
Proc.
Natl. Acad. Sci. U. S. A.
1977,
74:
4730
<A NAME="RC02909SS-14B">14b </A>
Kanji S.
Sainsbury M.
Phytochemistry
1974,
11:
503
<A NAME="RC02909SS-14C">14c </A>
Saito I.
Matsugo S.
Matsuura T.
J.
Am. Chem. Soc.
1979,
101:
7332
<A NAME="RC02909SS-14D">14d </A>
Ferroud C.
Rool P.
Heterocycles
2001,
55:
545
<A NAME="RC02909SS-14E">14e </A>
Baran PS.
Guerrero CA.
Corey EJ.
J. Am. Chem. Soc.
2003,
125:
5628
<A NAME="RC02909SS-14F">14f </A>
Baran PS.
Guerrero CA.
Hafensteiner BD.
Ambhaikar NB.
Angew.
Chem. Int. Ed.
2005,
44:
3892
<A NAME="RC02909SS-15">15 </A>
Electrostatic repulsion between the
phthalimide protecting group and the incoming electrophile might
also account for the high stereoselectivity observed
<A NAME="RC02909SS-16">16 </A>
ArgusLab 4.0; Mark A. Thompson, Planaria
Software LLC: Seattle; see: http://www.ArgusLab.com.