Synlett 2010(1): 73-76  
DOI: 10.1055/s-0029-1218386
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Utilization of Aminophosphonates in the Petasis Boronic Acid Mannich Reaction

Michael V. Shevchuka,b, Alexander E. Sorochinskya, Volodymyr P. Khilyab, Vadim D. Romanenkoa, Valery P. Kukhar*a
a Department of Fine Organic Synthesis, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska 1, Kyiv-94, 02660, Ukraine
Fax: +38(44)5732552; e-Mail: kukhar@bpci.kiev.ua;
b Department of Organic Chemistry, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 62A, Kyiv-33, 01033, Ukraine
Further Information

Publication History

Received 28 September 2009
Publication Date:
27 November 2009 (online)

Abstract

Aminophosphonates were used as amine components in the Petasis boronic acid Mannich reaction. With the use of α-aminophosphonates, several N-phosphonomethylglycine derivatives were prepared in modest to good yields and high diastereoselectivities. The method affords the possibility of variation for the substituents in the position α to the phosphorus and nitrogen atoms. By using the same methodology, highly functionalized amino acids were prepared starting from (R)-β-amino-α,α-difluoromethylphosphonate.

    References and Notes

  • 1a Multicomponent Reactions   Zhu J. Bienaymé H. Wiley-VCH; Weinheim: 2005. 
  • 1b Yus M. Ramón DJ. Angew. Chem. Int. Ed.  2005,  44:  1602 
  • 1c Dömling A. Chem. Rev.  2006,  106:  17 
  • 1d Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 1e Simon C. Constantieux T. Rodriguez J. Eur. J. Org. Chem.  2004,  4957 
  • 2a Petasis NA. Akritopoulou I. Tetrahedron Lett.  1993,  34:  583 
  • 2b Petasis NA. Goodman A. Zavialov IA. Tetrahedron  1997,  53:  16463 
  • 2c Petasis NA. Zavialov IA. J. Am. Chem. Soc.  1998,  120:  11798 
  • 2d Petasis NA. Aust. J. Chem.  2007,  60:  795 
  • 3 Petasis NA. In Multicomponent Reactions   Zhu J. Bienaymé H. Wiley-VCH; Weinheim: 2005.  p.199-223  
  • 4 Southwood TJ. Curry MC. Hutton CA. Tetrahedron  2006,  62:  236 
  • 5 Petasis NA. Zavialov IA. J. Am. Chem. Soc.  1997,  119:  445 
  • 6 Petasis NA, and Zavialov IA. inventors; US  6,232,467. 
  • 7 Aminophosphonic and Aminophosphinic Acids   Kukhar VP. Hudson HR. John Wiley and Sons; Chichester: 2000. 
  • 8a Kafarski P. Lejczak B. Curr. Med. Chem.  2001,  1:  301 
  • 8b Ordóñez M. Rogas-Cabrera H. Cativiela C. Tetrahedron  2009,  65:  17 
  • 8c Palacios F. Alonso C. de los Santos JM. Chem. Rev.  2005,  105:  899 
  • 8d Romanenko VD. Kukhar VP. Chem. Rev.  2006,  106:  3868 
  • 8e Moonen K. Laureyn I. Stevens CV. Chem. Rev.  2004,  104:  6177 
  • 8f Mikolajczyk M. Balczewski P. Top. Curr. Chem.  2003,  223:  161 
  • 9 Candeias NR. Veiros LF. Afonso CAM. Gois PMP. Eur. J. Org. Chem.  2009,  1859 
  • 11 Röschenthaler G.-V. Kukhar VP. Belik MYu. Mazurenko KI. Sorochinsky AE. Tetrahedron  2006,  62:  9902 
10

To a stirred suspension of glyoxylic acid monohydrate (92 mg, 1.00 mmol) in EtOAc (5 mL) tetraethyl pyrrolidine-2,2-diyldiphosphonate (3, 343 mg, 1.00 mmol) was added dropwise, after 5 min 2-thiopheneboronic acid (128 mg, 1.00 mmol) was added in one portion, and the reaction mixture was refluxed over 4 h while monitored by TLC (5% MeOH in CHCl3). After the completion of the reaction the solvent was evaporated yielding the crude product as yellow oil. Flash chromatography using 5% of MeOH in CH2Cl2 afforded 390 mg (80%) of compound 4d as colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 1.05 (t, 3 H, OCH2CH 3),1.15 (t, 3 H, OCH2CH 3), 1.30 (t, 3 H, OCH2CH 3), 1.31 (t, 3 H, OCH2CH 3), 1.77-1.84 (m, 2 H, CH2), 2.19 (m, 2 H, CH2), 3.01-3.07 (m, 1 H, CH2), 3.17-3.23 (m, 1 H, CH2), 3.78-3.88 (m, 1 H, OCH 2CH3), 3.90-4.10 (m, 3 H, OCH 2CH3), 4.14-4.26 (m, 4 H, OCH 2CH3), 5.83 (s, 1 H, CHCOOH), 6.87 (dd, J HH = 3.7 Hz, J HH = 5.1 Hz, 1 H, Hthiophene), 7.08 (dd, J HH = 1.0 Hz, J HH = 3.7 Hz, 1 H, Hthiophene), 7.20 (dd, J HH = 1.0 Hz, J HH = 5.1 Hz, 1 H, Hthiophene). ¹³C NMR (100 MHz, CDCl3): δ = 16.2 (d, J CP = 6.0 Hz, OCH2 CH3), 16.5 (d, J CP = 6.0 Hz, OCH2 CH3), 16.5 (d, J CP = 6.0 Hz, OCH2 CH3), 16.6 (d, J CP = 6.0 Hz, OCH2 CH3), 24.0 (t, J CP = 3.0 Hz, CH2), 32.3 (t, J CP = 4.0 Hz, CH2), 48.1 (d, J CP = 4.0 Hz, CH2), 59.8 (s, CHCOOH), 62.3 (d, J CP = 7.0 Hz, OCH2CH3), 63.2 (d, J CP = 7.0 Hz, OCH2CH3), 63.5 (d, J CP = 7.0 Hz, OCH2CH3), 63.5 (dd, J CP = 150.0 Hz, J CP = 155.0 Hz, PCP), 64.6 (d, J CP = 7.0 Hz, OCH2CH3), 125.9, 125.9, 128.7, 138.3, 172.5 (s, COOH). ³¹P NMR (162 MHz, CDCl3): δ = 20.8 (d, J PP = 92.3 Hz, 1 P), 23.3 (d, J PP = 92.3 Hz, 1 P). CI MS (CI, pos.): m/z (%) = 346 (100), 206 (15); MS (CI, neg.): m/z (%) = 482 (100) [M - H]-, 438 (10), 328 (10), 233 (40), 138 (10), 103 (30), 85 (45). Anal. Calcd for C18H31NO8P2S: C, 44.72; H, 6.46, N, 2.90, S, 6.63. Found: C, 44.61; H, 6.41; N, 2.87; S, 6.68.

12

To a stirred solution of pyruvic acid (44 mg, 0.50 mmol) in CH2Cl2 (3 mL) aminophosphonate 6 (147 mg, 0.50 mmol) was added dropwise, after 5 min (E)-2-phenylethenyl boronic acid (74 mg, 0.50 mmol) was added in one portion, and the reaction mixture was stirred for 24 h while monitored by TLC (5% MeOH in CHCl3). The solvent was evaporated, and the residual oil was chromatographed using a gradient of i-PrOH (7 → 13%) in CH2Cl2 to yield 75 mg (34%) as a mixture of diastereomers 7b, and 35 mg (15%) as pure major diastereomer. Summary yield 110 mg (49%).
Major diastereomer: ¹H NMR (400 MHz, CDCl3): δ = 1.26 (t, 3 H, OCH2CH 3),1.33 (t, 3 H, OCH2CH 3), 1.50 (s, 3 H, CH 3), 4.09-4.33 (m, 4 H, OCH 2CH3), 4.38 (dd, J HF = 23.0 Hz, J HF = 8.0 Hz, 1 H, CF2CH), 5.94 (d, J HH = 16.0 Hz, 1 H, PhCH=CH), 6.48 (d, J HH = 16.0 Hz, 1 H, PhCH=CH), 6.40 (br s, NH), 7.07 (d, J HH = 7.0 Hz, 2 H, H Ph), 7.18-7.39 (m, 8 H, HPh). ¹³C NMR (100 MHz, CDCl3): δ = 16.4 (m, OCH2CH3), 22.2 (s, CH3), 63.5 (s, CHCOOH), 64.7 (d, J CP = 7.0 Hz, OCH2CH3), 65.2 (d, J CP = 7.0 Hz, OCH2CH3), 126.7, 128.07, 128.5, 128.6, 128.6, 129.1, 130.9, 131.5, 136.1. ¹9F NMR (376 MHz, CDCl3): δ = -121.6 (ddd, J FF = 304.0 Hz, J FP = 108.0 Hz, J FH = 23.0 Hz, 1 F), -110.6 (ddd, J FF = 304.0 Hz, J FP = 104.0 Hz, J FH = 8.0 Hz, 1 F). ¹9P NMR (162 MHz, CDCl3): δ = 6.7 (dd, J PF = 108.0 Hz, J PF = 104.0 Hz). Anal. Calcd for C23H28F2NO5P: C, 59.10; H, 6.04. Found: C, 59.06; H, 6.14.