Abstract
A detailed gram-scale synthesis of VAPOL hydrogenphosphate, a
structurally distinct chiral Brønsted acid, is presented.
The reaction utilizes commercially available starting materials,
proceeds with high yields and has been reproduced numerous times
at scale.
Key words
VAPOL - asymmetric catalysis - Brønsted
acid - ligands - phosphoric acid
References
<A NAME="RM02110SS-1">1 </A>
Bao J.
Wulff WD.
Rheingold AL.
J.
Am. Chem. Soc.
1993,
115:
3814
<A NAME="RM02110SS-2A">2a </A>
Antilla JC.
Wulff WD.
J. Am. Chem. Soc.
1999,
121:
5099
<A NAME="RM02110SS-2B">2b </A>
Antilla JC.
Wulff WD.
Angew.
Chem. Int. Ed.
2000,
39:
4518
<A NAME="RM02110SS-2C">2c </A>
Loncaric C.
Wulff WD.
Org. Lett.
2001,
3:
3675
<A NAME="RM02110SS-2D">2d </A>
Patwardhan AP.
Pulgam VR.
Zhang Y.
Wulff WD.
Angew.
Chem. Int. Ed.
2005,
44:
6169
<A NAME="RM02110SS-2E">2e </A>
Deng Y.
Lee YR.
Newman CA.
Wulff WD.
Eur. J. Org. Chem.
2007,
2068
<A NAME="RM02110SS-2F">2f </A>
Lu Z.
Zhang Y.
Wulff WD.
J.
Am. Chem. Soc.
2007,
129:
7185
<A NAME="RM02110SS-2G">2g </A>
Newman C.
Antilla JC.
Chen P.
Predeus A.
Fielding L.
Wulff WD.
J. Am. Chem. Soc.
2007,
129:
7216
<A NAME="RM02110SS-2H">2h </A>
Zhang Y.
Desai A.
Lu Z.
Hu G.
Ding Z.
Wulff WD.
Chem. Eur. J.
2008,
14:
3785
<A NAME="RM02110SS-2I">2i </A>
Zhang Y.
Lu Z.
Desai A.
Wulff WD.
Org. Lett.
2008,
10:
5429
<A NAME="RM02110SS-2J">2j </A>
Zhang Y.
Lu Z.
Wulff WD.
Synlett
2009,
2715
<A NAME="RM02110SS-3A">3a </A>
Bao J.
Wulff WD.
Tetrahedron
Lett.
1995,
36:
3321
<A NAME="RM02110SS-3B">3b </A>
Heller DP.
Goldberg DR.
Wulff WD.
J. Am. Chem. Soc.
1997,
119:
10551
<A NAME="RM02110SS-3C">3c </A>
Xue S.
Yu S.
Deng Y.
Wulff WD.
Angew. Chem. Int. Ed.
2001,
40:
2271
<A NAME="RM02110SS-3D">3d </A>
Bolm C.
Frison J.-C.
Zhang Y.
Wulff WD.
Synlett
2004,
1619
<A NAME="RM02110SS-3E">3e </A>
Heller DP.
Goldberg DR.
Wu H.
Wulff WD.
Can.
J. Chem.
2006,
84:
1487
<A NAME="RM02110SS-4">4 </A>
Lou S.
Schaus SE.
J. Am. Chem. Soc.
2008,
130:
6922
<A NAME="RM02110SS-5">5 </A>
The VANOL and VAPOL ligands are now
commercially available from Sigma-Aldrich and Strem Chemicals, Inc.
<A NAME="RM02110SS-6">6 </A> For the synthesis of VAPOL and VANOL,
see:
Bao J.
Wulff WD.
Dominy JB.
Fumo MJ.
Grant EB.
Rob AC.
Whitcomb MC.
Yeung SM.
Ostrander RL.
Rheingold AL.
J. Am. Chem. Soc.
1996,
118:
3392
<A NAME="RM02110SS-7">7 </A>
Akiyama T.
Itoh J.
Yokota K.
Fuchibe K.
Angew. Chem. Int. Ed.
2004,
43:
1566
<A NAME="RM02110SS-8">8 </A>
Uraguchi D.
Terada M.
J. Am. Chem. Soc.
2004,
126:
5356
For reviews on chiral phosphoric
acid catalysis, see:
<A NAME="RM02110SS-9A">9a </A>
Akiyama T.
Itoh J.
Fuchibe K.
Adv.
Synth. Catal.
2006,
348:
999
<A NAME="RM02110SS-9B">9b </A>
Connon SJ.
Angew. Chem. Int. Ed.
2006,
45:
3909
<A NAME="RM02110SS-9C">9c </A>
Akiyama T.
Chem.
Rev.
2007,
107:
5744
<A NAME="RM02110SS-9D">9d </A>
Terada M.
Chem.
Commun.
2008,
4097
<A NAME="RM02110SS-10">10 </A>
Rowland GB.
Zhang H.
Rowland EB.
Chennamadhavuni S.
Wang Y.
Antilla JC.
J. Am. Chem. Soc.
2005,
127:
15696
<A NAME="RM02110SS-11A">11a </A>
Li G.
Liang Y.
Antilla JC.
J. Am. Chem. Soc.
2007,
129:
5830
<A NAME="RM02110SS-11B">11b </A> For theoretical modeling
of the chiral phosphoric acid mediated reductions with Hantzsch’s
ester, see:
Simon L.
Goodman JM.
J. Am. Chem. Soc.
2008,
130:
8741
<A NAME="RM02110SS-12">12 </A>
Liang Y.
Rowland EB.
Rowland GB.
Perman JA.
Antilla JC.
Chem. Commun.
2007,
4477
<A NAME="RM02110SS-13">13 </A>
Rowland EB.
Rowland GB.
Rivera-Otero E.
Antilla JC.
J. Am. Chem. Soc.
2007,
129:
12084
<A NAME="RM02110SS-14A">14a </A>
Della Sala G.
Lattanzi A.
Org.
Lett.
2009,
11:
3330
<A NAME="RM02110SS-14B">14b </A>
Larson SE.
Baso JC.
Li G.
Antilla JC.
Org.
Lett.
2009,
11:
5186
<A NAME="RM02110SS-15A">15a </A>
Li G.
Antilla JC.
Org.
Lett.
2009,
11:
1075
<A NAME="RM02110SS-15B">15b </A>
Li G.
Fronczek FR.
Antilla JC.
J. Am. Chem. Soc.
2008,
130:
12216
<A NAME="RM02110SS-15C">15c </A>
Li G.
Rowland GB.
Rowland EB.
Antilla JC.
Org.
Lett.
2007,
9:
4065
<A NAME="RM02110SS-16">16 </A>
Commercial CHCl3 stabilized
with amylene was used; and NOT the CHCl3 stabilized with
EtOH. It was found that if the latter is used, it becomes extremely
difficult to remove the residual EtOH from the product.
<A NAME="RM02110SS-17">17 </A>
Sometimes it is difficult to dissolve
the crude product in 35 mL of 1:1 MeOH-CHCl3 .
In such cases, a little pure MeOH could be added to help the dissolution.
Alternately, the mixture could be heated at ca. 30 ˚C to aid the dissolution.
<A NAME="RM02110SS-18">18 </A>
The side-product was collected, subjected
by rotary evaporation to dryness and high vacuum (0.1 mmHg) for
2 h. Its weight was 21 mg, and ¹ H NMR analysis
showed a mixture of unidentified products.
<A NAME="RM02110SS-19">19 </A>
The product, when spotted on a TLC
and observed under short-wave UV (254 nm), is an intense purple
spot.
<A NAME="RM02110SS-20">20 </A>
Sometimes, the VAPOL hydrogenphosphate
obtained after column chromatography did not dissolve in CH2 Cl2 to
give a clear solution. In such cases, the crude product should be left
on high vacuum (0.1 mmHg) overnight again, which might solve the
problem. If not, then the precipitation should be carried out with
the emulsion obtained on the addition of CH2 Cl2 to
the crude product - it was found that it proceeded just
fine even if a clear solution was not obtained.
<A NAME="RM02110SS-21">21 </A>
It has been observed in some reactions¹0 that
lower asymmetric inductions are obtained if the VAPOL hydrogenphosphate
is not properly dried.