Abstract
A number of N
α -alkyl,N
β -acylhydrazines
have been synthesized via the Ugi reaction of N -acylhydrazones
with an isocyanide and trifluoroacetic acid. The trifluoroacetic
acid acted as a ‘silent partner’ and becomes removed
upon basic workup of the reaction. These compounds have been efficiently
modified further via reductive alkylation to produce N
α ,N
α -dialkyl,N
β -acylhydrazines. The
two groups of novel hydrazinopeptide motifs have been shown by simple ¹ H
NMR spectroscopic experiments to display two different secondary
structure patterns. These observations were confirmed by X-ray crystallographic
analysis. Combining the hydrazone and carboxylic acid moieties in
one reaction precursor offers the opportunity for an ‘intramolecular’ hydrazino-Ugi
reaction, which was also demonstrated.
Key words
multicomponent reactions - hydrazones - substituent
effects - peptidomimetics - secondary structures
References
<A NAME="RP15009SS-1">1 </A>
Ugi I.
Meyr R.
Fitzer U.
Steinbrucker C.
Angew. Chem.
1959,
71:
386
<A NAME="RP15009SS-2">2 </A>
Dömling A.
Chem.
Rev.
2006,
106:
17
<A NAME="RP15009SS-3">3 </A>
El Kaim L.
Grimaud L.
Tetrahedron
2009,
65:
2153
<A NAME="RP15009SS-4A">4a </A>
Ugi I.
Bodesheim F.
Chem.
Ber.
1961,
94:
2797
<A NAME="RP15009SS-4B">4b </A>
Ugi I.
Bodesheim F.
Justus Liebigs Ann. Chem.
1963,
666:
61
<A NAME="RP15009SS-4C">4c </A>
Zinner G.
Kliegel W.
Arch. Pharm. (Weinheim, Ger.)
1966,
299:
746
<A NAME="RP15009SS-4D">4d </A>
Zinner G.
Bock W.
Arch. Pharm. (Weinheim, Ger.)
1971,
304:
933
<A NAME="RP15009SS-4E">4e </A>
Failli A.
Nelson V.
Immer H.
Götz M.
Can. J. Chem.
1973,
51:
2769
<A NAME="RP15009SS-4F">4f </A>
Marcaccini S.
Pepino R.
Polo C.
Pozo MC.
Synthesis
2001,
85
<A NAME="RP15009SS-5A">5a </A>
Zinner G.
Moderhack D.
Kliegel W.
Chem. Ber.
1969,
102:
2536
<A NAME="RP15009SS-5B">5b </A>
Moderhack D.
Justus
Liebigs Ann. Chem.
1973,
764:
359
<A NAME="RP15009SS-5C">5c </A>
Zinner G.
Moderhack D.
Hantelmann O.
Bock W.
Chem. Ber.
1974,
107:
2947
<A NAME="RP15009SS-5D">5d </A>
Basso A.
Banfi L.
Guanti G.
Riva R.
Riu A.
Tetrahedron
Lett.
2004,
45:
6109
<A NAME="RP15009SS-5E">5e </A>
Basso A.
Banfi L.
Guanti G.
Riva R.
Tetrahedron Lett.
2005,
46:
8003
<A NAME="RP15009SS-6">6 </A>
Diaz JL.
Miguel M.
Lavilla R.
J.
Org. Chem.
2004,
69:
3550
<A NAME="RP15009SS-7">7 </A>
Kiselyov AS.
Tetrahedron
Lett.
2005,
46:
4851
<A NAME="RP15009SS-8">8 </A>
Grupe R.
Baeck B.
Niedrich H.
J.
Prakt. Chem.
1971,
314:
751
<A NAME="RP15009SS-9">9 </A>
Bushkova E.
Parchinsky V.
Krasavin M.
Mol.
Diversity
2010, in press; DOI: 10.1007/s11030-009-9200-6
<A NAME="RP15009SS-10">10 </A>
Lelais G.
Seebach D.
Helv. Chim. Acta
2003,
86:
4152
<A NAME="RP15009SS-11">11 </A>
Guy L.
Vidal J.
Collet A.
J. Med. Chem.
1998,
41:
4833
<A NAME="RP15009SS-12">12 </A>
Aubury A.
Mangeot J.-P.
Vidal J.
Collet A.
Zerkout S.
Marraud M.
Int. J. Pept. Protein Res.
1994,
43:
305
<A NAME="RP15009SS-13">13 </A>
Efforts are currently underway in
our laboratories to realize a strategy of stereochemistry relay
from nonracemic partners in the hydrazino-Ugi reaction and, thus,
prepare short nonracemic hydrazinopeptide compounds via diastereomeric
resolution.
<A NAME="RP15009SS-14">14 </A>
Dömling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168
<A NAME="RP15009SS-15A">15a </A>
Marcaccini S.
Miguel D.
Torroba T.
Garcia-Valverde M.
J.
Org. Chem.
2003,
68:
3315
<A NAME="RP15009SS-15B">15b </A>
Marcaccini S.
Pepino R.
Torroba T.
Miguel D.
Garcia-Valverde M.
Tetrahedron
Lett.
2002,
43:
8591
<A NAME="RP15009SS-15C">15c </A>
Ilyin AP.
Trifilenkov A.
Kurashvili I.
Krasavin M.
Ivachtchenko AV.
J. Comb. Chem.
2005,
7:
360
<A NAME="RP15009SS-15D">15d </A>
Ilyin AP.
Loseva MV.
Vvedensky VY.
Putsykina EB.
Tkachenko SE.
Kravchenko DV.
Khvat AV.
Krasavin M.
Ivachtchenko AV.
J.
Org. Chem.
2006,
71:
2811
<A NAME="RP15009SS-16">16 </A>
Naskar D.
Roy A.
Seibel WL.
West L.
Portlock DE.
Tetrahedron
Lett.
2003,
44:
6297
<A NAME="RP15009SS-17">17 </A>
The ¹ H NMR spectroscopic
chemical shifts showed the α-nitrogen proton in 4 as well as the analogous proton in 10 to be negligibly sensitive to the solvent
change, most likely because the protons are less acidic.
<A NAME="RP15009SS-18A">18a </A>
Novak P.
Piculjan K.
Hrenar T.
Biljan T.
Meic Z.
J. Mol. Struct.
2009,
919:
66
<A NAME="RP15009SS-18B">18b </A>
Abraham RJ.
Mobli M.
Magn. Reson.
Chem.
2007,
45:
865
<A NAME="RP15009SS-18C">18c </A>
Grzesiek S.
Cordier F.
Jaravine V.
Barfield M.
Prog. Nucl. Magn. Reson. Spectrosc.
2004,
45:
275
<A NAME="RP15009SS-18D">18d </A>
Samoilenko AA.
Zh. Strukt. Khim.
1975,
16:
568
<A NAME="RP15009SS-19">19 </A>
All reference fragments 10 and 11 used
in this work are known and commercially available compounds.
<A NAME="RP15009SS-20">20 </A>
Crystallographic data (excluding structure
factors) for structures 4i and 9h have been deposited with the Cambridge Crystallographic
Data Centre (CCDC) as supplementary publications CCDC 743067 (4i ) and CCDC 752329
(9h ), respectively. Copies of the data
can be obtained free of charge on application to CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033,
e-mail: deposit@ccdc.cam.ac.uk].
<A NAME="RP15009SS-21">21 </A>
Molecular mechanics (MM2) calculations
performed using ChemBio3D (Ultra) v11.0 demonstrated that the observed conformations
for compounds 4i and 9h displayed minimized
energies of 6.48 and 7.62 kcal/mol, respectively. Alternative
hydrogen-bonded conformations displayed significantly higher minimized
energies (14.1 and 14.0 kcal/mol, respectively).