Abstract
Until today a “renal threshold for glucose” is described in most medical textbooks.
Notwithstanding, low glucose levels are detectable in urine even under euglycaemic
conditions – a phenomenon which was observed already in 1904 and labelled as “basal
glucosuria”. We aimed to characterise renal glucose transport during various steady-state
blood glucose levels. Twenty-two subjects with type 2 diabetes and normal renal function
underwent two 5-period hyperglycaemic glucose-clamps with blood glucose target levels
between 7.8 and 13.3 mmol·l−1 . A virtual renal threshold for glucose excretion (VRTG ) was calculated for every subject as the highest blood glucose concentration during
the glucose-clamps associated with a concomitant urinary glucose level of <2.8 mmol·l−1 . VRTG of subjects was classified as low, medium, and high. Each urine sample contained
a detectable amount of glucose with a minimal urinary glucose concentration of 0.73 mmol·l−1 . Median VRTG was 11.0 mmol·l−1 , ranging from 7.8 and 12.1 mmol·l−1 . With increasing blood glucose renal glucose excretion increased in each subject
– but varied considerably between subjects. For example, at a blood glucose concentration
of 11 mmol·l−1 renal glucose excretion ranged from 163 μmol·min−1 to 25 μmol·min−1 in subjects exhibiting a low to high VRTG , thus showing a variability >factor 6. This study reinforces the rejection of the
concept of a renal threshold for glucose. Instead, this study shows a substantial
variability of renal glucose excretion between subjects with type 2 diabetes.
Key words
renal threshold for glucose excretion - urinary glucose - splay - tubular transport
maximum for glucose - hyperglycaemic glucose-clamp - type 2 diabetes mellitus
References
1 Deetjen P, Drexel H, Aczel S. Renal handling of D -Glucose and Other Sugars. In: Massry SG, Glassock RJ, ed.
Massry and Glassock's Textbook of Nephrology . Philadelphia: Lippincott Williams & Wilkins 2001: 87-90
2 Deetjen P, Baeyer Hv, Drexel H. Renal glucose transport. In: Seldin DW, Giebisch
G, ed.
The kidney: physiology and pathophysiology . New York: Raven Press 1992: 2873- 2888
3
Davison JM, Cheyne GA.
Renal reabsorption of glucose.
Lancet.
1972;
1
787-788
4
Davison JM, Cheyne GA.
History of the measurement of glucose in urine: a cautionary tale.
Med Hist.
1974;
18
194-197
5
Shannon JA, Farber S, Troast L.
The measurement of glucose Tm in the normal dog.
Am J Physiol.
1941;
133
752-761
6
Brodehl J, Franken A, Gellissen K.
Maximal tubular reabsorption of glucose in infants and children.
Acta Paediatr Scand.
1972;
61
413-420
7
Rohde R, Deetjen P.
Glucose reabsorption in the rat kidney. Micro_puncture analysis of tubular glucose
concentration during free flow.
Pflugers Arch.
1968;
302
219-232
8 Hierholzer K, Fromm M. Funktionen der Nieren. In: Schmidt RF, Thews G, ed.
Physiologie des Menschen . Berlin: Springer 1997: 737-777
9
Golenhofen K.
Physiologie.
1997;
386-392
10 Berger M, Sawicki PT. Coma diabeticum. In: Berger M, ed.
Diabetes mellitus . München: Urban & Fischer 2000: 387-393
11 Bojunga J, Badenhoop K, Althoff PH, Usadel KH. Akute Stoffwechselentgleisungen. In:
Mehnert H, Standl E, Usadel KH, Häring HU, ed.
Diabetologie in Klinik und Praxis . Stuttgart: Georg Thieme 2003: 376-399
12 Grüneklee D. Diagnostik und Therapiekontrolle des Diabetes mellitus. In: Rosak
C, ed.
Angewandte Diabetologie . Bremen: UNI-MED 2005: 40-65
13 Krautzig S. Niere. In: Renz-Polster H, Braun J, ed.
Basislehrbuch Innere Medizin . München: Urban & Fischer 2001: 840-913
14
Lazarus A.
3. Über alimentäre Glykosurie.
Z Ärztl Fortbild (Jena).
1904;
1
517-520
15
Benedict SR, Osterberg E.
A method for the determination of sugar in normal urine.
J Biol Chem.
1918;
34
195-201
16
Brodehl J, Oemar BS, Hoyer PF.
Renal glucosuria.
Pediatr Nephrol.
1987;
1
502-508
17
Fine J.
Glucose content of normal urine.
Br Med J.
1965;
1
1209-1214
18
Folin O.
A qualitative (reduction) test for sugar in normal human urine.
J Biol Chem.
1915;
22
327-329
19
Gupta RC, Goyal A, Ghosh R, Punjabi M, Singh PP.
Normal range for glucose in urine: age-related changes.
Clin Chem.
1982;
28
2335
20
Hanusch AW, Kaiser G.
A contribution to urinary glucose excretion of metabolically healthy persons.
Dtsch Gesundheitsw.
1968;
23
1888-1892
21
Heimsoth VH, Graffe-Achelis C, Banauch D, Vollmar J.
Referenzwerte für die Glukosekonzentration im Urin von Erwachsenen.
Med Lab (Stuttg).
1978;
31
236-240
22 Heinemann L, Sawicki PT, Niederau CM, Starke AAR. Klinische Chemie. In: Berger
M, ed.
Diabetes Mellitus . München: Urban & Fischer 2000: 44-65
23
Jain S.
Reference interval for urinary glucose in elderly subjects.
Clin Chem.
1986;
32
711-712
24
Jain S.
Reference interval for urinary glucose: effect of age.
Clin Chem.
1986;
32
1426
25 Kruse-Jarres JD, Reinauer H, Witt I. Kohlenhydratstoffwechsel. In: Greiling H,
Gressner AM, ed.
Lehrbuch der klinischen Chemie und Pathobiochemie . Stuttgart: Schattauer 1995: 248-299
26
Renschler HE, Weicker H, von Baeyer H.
The upper limit of glucose concentration in the urine of healthy subjects].
Dtsch Med Wochenschr.
1965;
90
2349-2353
27
Sindoni A.
Blood sugar versus urine sugar.
J Am Med Assoc.
1939;
112
2503-2504
28 Thomas L. Glucose im Harn und anderen Körperflüssigkeiten. In: Thomas L, ed.
Labor und Diagnose . Frankfurt/Main: TH-Books 1998: 141-142
29
Butterfield WJ, Keen H, Whichelow MJ.
Renal glucose threshold variations with age.
Br Med J.
1967;
4
505-507
30
Walford S, Page MM, Allison SP.
The influence of renal threshold on the interpretation of urine tests for glucose
in diabetic patients.
Diabetes Care.
1980;
3
672-674
31
Winter KA.
Relationships between blood and urinary sugar and their clinical significance. 1.
Methodical studies and results.
Z Gesamte Inn Med.
1973;
28
189-194
32
Winter KA.
Relationships between blood and urinary sugar and their clinical significance. 2.
Clinical significance of marginal blood sugar value determinations.
Z Gesamte Inn Med.
1973;
28
217-222
33
Menzel R, Kaisaki PJ, Rjasanowski I, Heinke P, Kerner W, Menzel S.
A low renal threshold for glucose in diabetic patients with a mutation in the hepatocyte
nuclear factor-1α (HNF-1α) gene.
Diabet Med.
1998;
15
816-820
34
Ruhnau B, Faber OK, Borch-Johnsen K, Thorsteinsson B.
Renal threshold for glucose in non-insulin-dependent diabetic patients.
Diabetes Res Clin Pract.
1997;
36
27-33
35
Mohnike G, Lisewski G, Israel HJ.
The threshold point for glucose in diabetes mellitus and renal diabetes.
Z Gesamte Inn Med.
1961;
16
1073-1077
36
Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus
.
Diabetes Care.
1997;
20
1183-1197
37
Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG.
Using serum creatinine to estimate glomerular filtration rate: accuracy in good health
and in chronic kidney disease.
Ann Intern Med.
2004;
141
929-937
38
Rave K, Nosek L, Posner J, Heise T, Roggen K, van Hoogdalem E-J.
Renal glucose excretion as a function of blood glucose concentration in subjects with
type 2 diabetes – results of a hyperglycaemic glucose clamp study.
Nephrol Dial Transplant.
2006;
21
2166-2171
39
Johansen K, Svendsen PA, Lorup B.
Variations in renal threshold for glucose in Type 1 (insulin-dependent) diabetes mellitus.
Diabetologia.
1984;
26
180-182
40
Erkelens DW, Dullaart R, Peuker N.
Tubular reabsorption of glucose in quantifying the relation between blood glucose
and urinary glucose excretion in diabetic patients.
Neth J Med.
1983;
26
1-9
Correspondence
K. RaveMD
Profil Institut für Stoffwechselforschung GmbH
Hellersbergstr. 9
41460 Neuss
Germany
Phone: +49/2131/40 18 403
Fax: +49/2131/40 18 503
Email: klaus.rave@profil-research.de