Semin Musculoskelet Radiol 2009; 13(2): 145-156
DOI: 10.1055/s-0029-1220885
© Thieme Medical Publishers

New Perspectives on Bone Marrow Contrast Agents and Molecular Imaging

Heike E. Daldrup-Link1 , Arpan Mohanty1 , Charles Cuenod2 , Bernd Pichler3 , Thomas Link1
  • 1Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
  • 2Department of Radiology, Université Paris Descartes, Paris, France
  • 3Laboratory for Preclinical Imaging and Imaging Technology, Department of Radiology, University of Tuebingen, Tuebingen, Germany
Further Information

Publication History

Publication Date:
19 May 2009 (online)

ABSTRACT

Magnetic resonance (MR) imaging of bone marrow provides a noninvasive diagnosis of the vascularity, cell quantity, and composition of the normal and pathological bone marrow. This article reviews new and evolving techniques for bone marrow MR imaging with a special focus on translational and clinical applications. Evaluations of bone marrow perfusion with standard small molecular contrast agents and, more recently, with macromolecular contrast agents are currently being applied for therapy monitoring. Cell-specific contrast agents are expected to improve the sensitivity and specificity of bone marrow MR imaging. Novel cellular and molecular imaging techniques for the depiction of cell metabolism and specific biochemical pathways are discussed. Cell tracking techniques may allow specific diagnoses of inflammatory processes as well as monitoring of novel therapies based on stem cells. Future developments of fusion imaging techniques and bifunctional contrast agents are directed to combine comprehensive information about bone marrow structure and function with targeted and image-guided therapies.

REFERENCES

  • 1 Erlemann R, Reiser M F, Peters P E et al.. Musculoskeletal neoplasms: static and dynamic Gd-DTPA—enhanced MR imaging.  Radiology. 1989;  171(3) 767-773
  • 2 Erlemann R, Sciuk J, Bosse A et al.. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy.  Radiology. 1990;  175(3) 791-796
  • 3 Vacca A, Ribatti D, Roncali L et al.. Bone marrow angiogenesis and progression in multiple myeloma.  Br J Haematol. 1994;  87(3) 503-508
  • 4 Rahmouni A, Tempany C, Jones R, Mann R, Yang A, Zerhouni E. Lymphoma: monitoring tumor size and signal intensity with MR imaging.  Radiology. 1993;  188(2) 445-451
  • 5 Moehler T M, Hawighorst H, Neben K et al.. Bone marrow microcirculation analysis in multiple myeloma by contrast-enhanced dynamic magnetic resonance imaging.  Int J Cancer. 2001;  93(6) 862-868
  • 6 Griffith J F, Yeung D K, Tsang P H et al.. Compromised bone marrow perfusion in osteoporosis.  J Bone Miner Res. 2008;  23(7) 1068-1075
  • 7 Montazel J L, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging.  Radiology. 2003;  229(3) 703-709
  • 8 Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration.  Skeletal Radiol. 1997;  26(7) 414-418
  • 9 Daldrup-Link H E, Link T M, Rummeny E J et al.. Assessing permeability alterations of the blood-bone marrow barrier due to total body irradiation: in vivo quantification with contrast enhanced magnetic resonance imaging.  Bone Marrow Transplant. 2000;  25(1) 71-78
  • 10 Hawighorst H, Libicher M, Knopp M V, Moehler T, Kauffmann G W, Kaick G. Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI.  J Magn Reson Imaging. 1999;  10(3) 286-294
  • 11 Bollow M, Knauf W, Korfel A et al.. Initial experience with dynamic MR imaging in evaluation of normal bone marrow versus malignant bone marrow infiltrations in humans.  J Magn Reson Imaging. 1997;  7(1) 241-250
  • 12 Moulopoulos L A, Maris T G, Papanikolaou N, Panagi G, Vlahos L, Dimopoulos M A. Detection of malignant bone marrow involvement with dynamic contrast-enhanced magnetic resonance imaging.  Ann Oncol. 2003;  14(1) 152-158
  • 13 Stäbler A, Baur A, Bartl R, Munker R, Lamerz R, Reiser M F. Contrast enhancement and quantitative signal analysis in MR imaging of multiple myeloma: assessment of focal and diffuse growth patterns in marrow correlated with biopsies and survival rates.  AJR Am J Roentgenol. 1996;  167(4) 1029-1036
  • 14 Pham C D, Roberts T P, van Bruggen N et al.. Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor.  Cancer Invest. 1998;  16(4) 225-230
  • 15 Daldrup-Link H E, Okuhata Y, Wolfe A et al.. Decrease in tumor apparent permeability-surface area product to a MRI macromolecular contrast medium following angiogenesis inhibition with correlations to cytotoxic drug accumulation.  Microcirculation. 2004;  11(5) 387-396
  • 16 Zheng S P, Zheng S J, Wu R L, Huang F Y, Cao L M, Jiao C L. Enhanced efficacy in anti-tumour activity by combined therapy of recombinant FGFR-1 related angiogenesis and low-dose cytotoxic agent.  Eur J Cancer. 2007;  43(14) 2134-2139
  • 17 Hou J M, Liu J Y, Yang L et al.. Combination of low-dose gemcitabine and recombinant quail vascular endothelial growth factor receptor-2 as a vaccine induces synergistic antitumor activities.  Oncology. 2005;  69(1) 81-87
  • 18 Teicher B A, Sotomayor E A, Huang Z D. Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease.  Cancer Res. 1992;  52(23) 6702-6704
  • 19 Lee K, Erturk E, Mayer R, Cockett A T. Efficacy of antitumor chemotherapy in C3H mice enhanced by the antiangiogenesis steroid, cortisone acetate.  Cancer Res. 1987;  47(19) 5021-5024
  • 20 Gali-Muhtasib H, Sidani M, Geara F et al.. Quinoxaline 1,4-dioxides are novel angiogenesis inhibitors that potentiate antitumor effects of ionizing radiation.  Int J Oncol. 2004;  24(5) 1121-1131
  • 21 Schellinger D, Lin C S, Hatipoglu H G, Fertikh D. Potential value of vertebral proton MR spectroscopy in determining bone weakness.  AJNR Am J Neuroradiol. 2001;  22(8) 1620-1627
  • 22 Kugel H, Jung C, Schulte O, Heindel W. Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow.  J Magn Reson Imaging. 2001;  13(2) 263-268
  • 23 Griffith J F, Yeung D K, Antonio G E et al.. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy.  Radiology. 2005;  236(3) 945-951
  • 24 Vanel D, Missenard G, Le Cesne A, Guinebretière J M. Red marrow recolonization induced by growth factors mimicking an increase in tumor volume during preoperative chemotherapy: MR study.  J Comput Assist Tomogr. 1997;  21(4) 529-531
  • 25 Nonomura Y, Yasumoto M, Yoshimura R et al.. Relationship between bone marrow cellularity and apparent diffusion coefficient.  J Magn Reson Imaging. 2001;  13(5) 757-760
  • 26 Metz S, Lohr S, Settles M et al.. Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas.  Eur Radiol. 2006;  16(3) 598-607
  • 27 Daldrup-Link H E, Rummeny E J, Ihssen B, Kienast J, Link T M. Iron-oxide-enhanced MR imaging of bone marrow in patients with non-Hodgkin's lymphoma: differentiation between tumor infiltration and hypercellular bone marrow.  Eur Radiol. 2002;  12(6) 1557-1566
  • 28 Simon G H, Raatschen H J, Wendland M F et al.. Ultrasmall superparamagnetic iron-oxide-enhanced MR imaging of normal bone marrow in rodents: original research.  Acad Radiol. 2005;  12(9) 1190-1197
  • 29 Lutz A M, Seemayer C, Corot C et al.. Detection of synovial macrophages in an experimental rabbit model of antigen-induced arthritis: ultrasmall superparamagnetic iron oxide-enhanced MR imaging.  Radiology. 2004;  233(1) 149-157
  • 30 Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10.  Invest Radiol. 2004;  39(1) 56-63
  • 31 Reimer P, Bremer C, Allkemper T et al.. Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase I study.  Radiology. 2004;  231(2) 474-481
  • 32 Lutz A M, Weishaupt D, Persohn E et al.. Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics.  Radiology. 2005;  234(3) 765-775
  • 33 Kaim A H, Wischer T, O'Reilly T et al.. MR imaging with ultrasmall superparamagnetic iron oxide particles in experimental soft-tissue infections in rats.  Radiology. 2002;  225(3) 808-814
  • 34 Kaim A H, Jundt G, Wischer T et al.. Functional-morphologic MR imaging with ultrasmall superparamagnetic particles of iron oxide in acute and chronic soft-tissue infection: study in rats.  Radiology. 2003;  227(1) 169-174
  • 35 Bierry G, Jehl F, Prévost G et al.. Percutaneous inoculated rabbit model of intervertebral disc space infection: magnetic resonance imaging features with pathological correlation.  Joint Bone Spine. 2008;  75(4) 465-470
  • 36 Weissleder R, Cheng H C, Bogdanova A, Bogdanov Jr A. Magnetically labeled cells can be detected by MR imaging.  J Magn Reson Imaging. 1997;  7(1) 258-263
  • 37 Lewin M, Carlesso N, Tung C-H et al.. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells.  Nat Biotechnol. 2000;  18(4) 410-414
  • 38 Bulte J W, Douglas T, Witwer B et al.. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells.  Nat Biotechnol. 2001;  19 1141-1147
  • 39 Daldrup-Link H E, Rudelius M, Oostendorp R AJ et al.. Targeting of hematopoietic progenitor cells with MR contrast agents.  Radiology. 2003;  228(3) 760-767
  • 40 Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny E J, Daldrup-Link H E. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro.  Eur Radiol. 2004;  14(10) 1851-1858
  • 41 Frank J A, Miller B R, Arbab A S et al.. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents.  Radiology. 2003;  228(2) 480-487
  • 42 Arbab A S, Yocum G T, Kalish H et al.. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI.  Blood. 2004;  104(4) 1217-1223
  • 43 Hoehn M, Küstermann E, Blunk J et al.. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat.  Proc Natl Acad Sci U S A. 2002;  99(25) 16267-16272
  • 44 Arbab A S, Yocum G T, Rad A M et al.. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells.  NMR Biomed. 2005;  18(8) 553-559
  • 45 de Vries I J, Lesterhuis W J, Barentsz J O et al.. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy.  Nat Biotechnol. 2005;  23(11) 1407-1413
  • 46 Syková E, Jendelová P. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord.  Neurodegener Dis. 2006;  3(1-2) 62-67
  • 47 Henning T D, Saborowski O, Golovko D et al.. Cell labeling with the positive MR contrast agent gadofluorine M.  Eur Radiol. 2007;  17(5) 1226-1234
  • 48 Rudelius M, Daldrup-Link H E, Heinzmann U et al.. Highly efficient paramagnetic cellular labeling by standard transfection protocols.  Eur J Nucl Med Mol Imaging. 2003;  30 1038-1044
  • 49 Daldrup-Link H E, Rudelius M, Piontek G et al.. Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment.  Radiology. 2005;  234(1) 197-205
  • 50 Heymer A, Haddad D, Weber M et al.. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair.  Biomaterials. 2008;  29(10) 1473-1483
  • 51 Terrovitis J V, Bulte J W, Sarvananthan S, Crowe L A, Sarathchandra P, Batten P et al.. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds—relevance to tissue engineering.  Tissue Eng. 2006;  12(10) 2765-2775
  • 52 Jing X H, Yang L, Duan X J et al.. In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection.  Joint Bone Spine. 2008;  75(4) 432-438
  • 53 Quintana A, Raczka E, Piehler L et al.. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor.  Pharm Res. 2002;  19(9) 1310-1316
  • 54 Choi H, Choi S R, Zhou R, Kung H F, Chen I W. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery.  Acad Radiol. 2004;  11(9) 996-1004
  • 55 Leuschner C, Kumar C S, Hansel W, Soboyejo W, Zhou J, Hormes J. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases.  Breast Cancer Res Treat. 2006;  99(2) 163-176
  • 56 Macheda M L, Rogers S, Best J D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.  J Cell Physiol. 2005;  202(3) 654-662
  • 57 Clavo A C, Brown R S, Wahl R L. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia.  J Nucl Med. 1995;  36(9) 1625-1632
  • 58 Haberkorn U, Ziegler S I, Oberdorfer F et al.. FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models.  Nucl Med Biol. 1994;  21(6) 827-834
  • 59 Maublant J, Vuillez J P, Talbot J N et al.. Positron emission tomography (PET) and (F-18)-fluorodeoxyglucose in (FDG) in cancerology [in French].  Bull Cancer. 1998;  85(11) 935-950
  • 60 Luciani A, Olivier J C, Clement O et al.. Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes.  Radiology. 2004;  231(1) 135-142
  • 61 Nobs L, Buchegger F, Gurny R, Allémann E. Current methods for attaching targeting ligands to liposomes and nanoparticles.  J Pharm Sci. 2004;  93(8) 1980-1992
  • 62 Torchilin V P. Liposomes as delivery agents for medical imaging.  Mol Med Today. 1996;  2(6) 242-249
  • 63 Unger E C, Shen D K, Fritz T A. Status of liposomes as MR contrast agents.  J Magn Reson Imaging. 1993;  3(1) 195-198
  • 64 Gregoriadis G, Florence A T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential.  Drugs. 1993;  45(1) 15-28
  • 65 Uchegbu I F, Schätzlein A, Vanlerberghe G, Morgatini N, Florence A T. Polyhedral non-ionic surfactant vesicles.  J Pharm Pharmacol. 1997;  49(6) 606-610
  • 66 Dufes C, Schätzlein A G, Tetley L et al.. Niosomes and polymeric chitosan based vesicles bearing transferrin and glucose ligands for drug targeting.  Pharm Res. 2000;  17(10) 1250-1258
  • 67 Woodle M C, Lasic D D. Sterically stabilized liposomes.  Biochim Biophys Acta. 1992;  1113(2) 171-199
  • 68 Allen T M, Hansen C B, Lopes de Menezes D E. Pharmacokinetics of long-circulating liposomes.  Adv Drug Deliv Rev. 1995;  16 267-284
  • 69 Wu N Z, Da D, Rudoll T L, Needham D, Whorton A R, Dewhirst M W. Increased microvascular permeability contributes to preferential accumulation of stealth liposomes in tumor tissue.  Cancer Res. 1993;  53(16) 3765-3770
  • 70 Needham D, McIntosh T J, Lasic D D. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes.  Biochim Biophys Acta. 1992;  1108(1) 40-48
  • 71 Uster P S, Allen T M, Daniel B E, Mendez C J, Newman M S, Zhu G Z. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time.  FEBS Lett. 1996;  386(2-3) 243-246
  • 72 Huang Y, Chen J, Chen X, Gao J, Liang W. PEGylated synthetic surfactant vesicles (Niosomes): novel carriers for oligonucleotides.  J Mater Sci Mater Med. 2008;  19(2) 607-614
  • 73 Oyewumi M O, Yokel R A, Jay M, Coakley T, Mumper R J. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice.  J Control Release. 2004;  95(3) 613-626
  • 74 Bulte J W, de Cuyper M, Despres D, Frank J A. Short- vs. long-circulating magnetoliposomes as bone marrow-seeking MR contrast agents.  J Magn Reson Imaging. 1999;  9(2) 329-335
  • 75 Päuser S, Reszka R, Wagner S, Wolf K J, Buhr H J, Berger G. Liposome-encapsulated superparamagnetic iron oxide particles as markers in an MRI-guided search for tumor-specific drug carriers.  Anticancer Drug Des. 1997;  12(2) 125-135
  • 76 Fortin-Ripoche J P, Martina M S, Gazeau F et al.. Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility.  Radiology. 2006;  239(2) 415-424
  • 77 Martina M S, Fortin J P, Ménager C et al.. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging.  J Am Chem Soc. 2005;  127(30) 10676-10685
  • 78 Monsky W L, Kruskal J B, Lukyanov A N et al.. Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model.  Radiology. 2002;  224(3) 823-829
  • 79 Goldberg S N, Girnan G D, Lukyanov A N et al.. Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model.  Radiology. 2002;  222(3) 797-804
  • 80 Harrington K J, Rowlinson-Busza G, Syrigos K N, Uster P S, Vile R G, Stewart J S. Pegylated liposomes have potential as vehicles for intratumoral and subcutaneous drug delivery.  Clin Cancer Res. 2000;  6(6) 2528-2537
  • 81 Beyer T, Townsend D W. Putting ‘clear’ into nuclear medicine: a decade of PET/CT development.  Eur J Nucl Med Mol Imaging. 2006;  33(8) 857-861
  • 82 Beyer T, Townsend D W, Brun T et al.. A combined PET/CT scanner for clinical oncology.  J Nucl Med. 2000;  41(8) 1369-1379
  • 83 Shao Y, Cherry S R, Farahani K et al.. Simultaneous PET and MR imaging.  Phys Med Biol. 1997;  42(10) 1965-1970
  • 84 Judenhofer M S, Wehrl H F, Newport D F et al.. Simultaneous PET-MRI: a new approach for functional and morphological imaging.  Nat Med. 2008;  14(4) 459-465
  • 85 Catana C, Procissi D, Wu Y, Judenhofer M S, Qi J, Pichler B J et al.. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.  Proc Natl Acad Sci U S A. 2008;  105(10) 3705-3710
  • 86 Raylman R R, Majewski S, Velan S S et al.. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager.  J Magn Reson. 2007;  186(2) 305-310
  • 87 Schlemmer H P, Pichler B J, Schmand M et al.. Simultaneous MR/PET imaging of the human brain: feasibility study.  Radiology. 2008;  248(3) 1028-1035

Heike E Daldrup-LinkM.D. 

Department of Radiology, Section of Pediatric Radiology, University of California San Francisco

505 Parnassus Ave., San Francisco, CA 94143-0628

Email: daldrup@radiology.ucsf.edu

    >