Horm Metab Res 2009; 41(10): 752-756
DOI: 10.1055/s-0029-1224116
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Role of the Novel mTOR Inhibitor RAD001 (Everolimus) in Anaplastic Thyroid Cancer

C. Papewalis1 , M. Wuttke 1 , S. Schinner 1 , H. S. Willenberg 1 , A. M. Baran 1 , W. A. Scherbaum 1 , M. Schott 1
  • 1Endocrine Cancer Center, Department of Endocrinology, Diabetes and Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
Weitere Informationen

Publikationsverlauf

received 30.03.2009

accepted 28.04.2009

Publikationsdatum:
09. Juni 2009 (online)

Abstract

Activation of the phosphatidylinositol-3-kinase (PI3K) signaling cascade is increasingly recognized as a common feature of thyroid follicular neoplasms. Among the PI3K downstream effectors, the main kinase, directly responsible for the increased cell growth and proliferation, is called mammalian target of rapamycin (mTOR). This central kinase might be directly inhibited via rapamycin and its derivatives. The aim of the present study was to examine whether RAD001 (everolimus) can selectively suppress the proliferation of different anaplastic thyroid cancer (ATC) cells. Five different human ATC cell lines were exposed to different concentrations of RAD001. Importantly, we found a dose-dependent growth inhibition in two ATC cell lines at concentrations of 43.5 and 94.5 nM although not as intensive as within the RAD001 responding K562cell line. The other cell lines revealed a GI50 between 168 to 234 nM. In parallel, quantitative PCR of PCNA displayed a reduced expression of PCNA within the responding cell lines, respectively. In summary, we found a good responding effect in a part of ATC cell lines, which may have a clinical impact.

References

  • 1 Reiners C, Wegscheider K, Schicha H, Theissen P, Vaupel R, Wrbitzky R, Schumm-Draeger PM. Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96 278 unselected employees.  Thyroid. 2004;  14 926-932
  • 2 Larsen PR. Thyroid-pituitary interaction: feedback regulation of thyrotropin secretion by thyroid hormones.  N Engl J Med. 1982;  306 23-32
  • 3 Kimura T, Van KA, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models.  Endocr Rev. 2001;  22 631-656
  • 4 Saito J, Kohn AD, Roth RA, Noguchi Y, Tatsumo I, Hirai A, Suzuki K, Kohn LD, Saji M, Ringel MD. Regulation of FRTL-5 thyroid cell growth by phosphatidylinositol (OH) 3 kinase-dependent Akt-mediated signaling.  Thyroid. 2001;  11 339-351
  • 5 Coulonval K, Vandeput F, Stein RC, Kozma SC, Lamy F, Dumont JE. Phosphatidylinositol 3-kinase, protein kinase B and ribosomal S6 kinases in the stimulation of thyroid epithelial cell proliferation by cAMP and growth factors in the presence of insulin.  Biochem. J 2000;  348 (Pt 2) 351-358
  • 6 Bellacosa A, Kumar CC, Di CA, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting.  Adv Cancer Res. 2005;  94 29-86
  • 7 Di CA, Pandolfi PP. The multiple roles of PTEN in tumor suppression.  Cell. 2000;  100 387-390
  • 8 Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, Wang Y, Trink A, El-Naggar AK, Tallini G, Vasko V, Xing M. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer.  Clin Cancer Res. 2007;  13 1161-1170
  • 9 Wang Y, Hou P, Yu H, Wang W, Ji M, Zhao S, Yan S, Sun X, Liu D, Shi B, Zhu G, Condouris S, Xing M. High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors.  J Clin Endocrinol Metab. 2007;  92 2387-2390
  • 10 Sogol PB, Sugawara M, Gordon HE, Shellow WV, Hernandez F, Hershman JM. Cowden's disease: familial goiter and skin hamartomas. A report of three cases.  West J Med. 1983;  139 324-328
  • 11 Gao N, Flynn DC, Zhang Z, Zhong XS, Walker V, Liu KJ, Shi X, Jiang BH. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells.  Am J Physiol Cell Physiol. 2004;  287 C281-C291
  • 12 Brewer C, Yeager N, Di CA. Thyroid-stimulating hormone initiated proliferative signals converge in vivo on the mTOR kinase without activating AKT.  Cancer Res. 2007;  67 8002-8006
  • 13 Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, Schilder RJ, Ozols RF, Testa JR. RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model.  Clin Cancer Res. 2007;  13 4261-4270
  • 14 Averous J, Fonseca BD, Proud CG. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1.  Oncogene. 2008;  8 1106-1113
  • 15 Seeliger H, Guba M, Kleespies A, Jauch KW, Bruns CJ. Role of mTOR in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis.  Cancer Metastasis Rev. 2007;  26 611-621
  • 16 Mosley JD, Poirier JT, Seachrist DD, Landis MD, Keri RA. Rapamycin inhibits multiple stages of c-Neu/ErbB2 induced tumor progression in a transgenic mouse model of HER2-positive breast cancer.  Mol Cancer Ther. 2007;  6 2188-2197
  • 17 Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T, Natt F, Hall J, Lane HA, Thomas G. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation.  Cell. 2005;  120 747-759
  • 18 Heldin NE, Westermark B. The molecular biology of the human anaplastic thyroid carcinoma cell.  Thyroidology. 1991;  3 127-131
  • 19 Haase M, Schott M, Bornstein SR, Malendowicz LK, Scherbaum WA, Willenberg HS. CITED2 is expressed in human adrenocortical cells and regulated by basic fibroblast growth factor.  J Endocrinol. 2007;  192 459-465
  • 20 Willenberg HS, Haase M, Papewalis C, Schott M, Scherbaum WA, Bornstein SR. Corticotropin-releasing hormone receptor expression on normal and tumorous human adrenocortical cells.  Neuroendocrinology. 2005;  82 274-281
  • 21 Yeager N, Klein-Szanto A, Kimura S, Di CA. Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into thyroid function and Cowden disease pathogenesis.  Cancer Res. 2007;  67 959-966
  • 22 Kim CS, Vasko VV, Kato Y, Kruhlak M, Saji M, Cheng SY, Ringel MD. AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma.  Endocrinology. 2005;  146 4456-4463
  • 23 Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H, Bernet V, Burman KD, Kohn LD, Saji M. Overexpression and overactivation of Akt in thyroid carcinoma.  Cancer Res. 2001;  61 6105-6111
  • 24 Vasko V, Saji M, Hardy E, Kruhlak M, Larin A, Savchenko V, Miyakawa M, Isozaki O, Murakami H, Tsushima T, Burman KD, De MC, Ringel MD. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer.  J Med Genet. 2004;  41 161-170
  • 25 Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3 K pathway as an integrator of multiple inputs during tumorigenesis.  Nat Rev Cancer. 2006;  6 184-192
  • 26 Kopelovich L, Fay JR, Sigman CC, Crowell JA. The mammalian target of rapamycin pathway as a potential target for cancer chemoprevention.  Cancer Epidemiol Biomarkers Prev. 2007;  16 1330-1340
  • 27 Guertin DA, Sabatini DM. Defining the role of mTOR in cancer.  Cancer Cell. 2007;  12 9-22
  • 28 Abraham RT, Gibbons JJ. The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy.  Clin Cancer Res. 2007;  13 3109-3114
  • 29 Broecker-Preuss M, Sheu SY, Worm K, Feldkamp J, Witte J, Scherbaum WA, Mann K, Schmid KW, Schott M. Expression and mutation analysis of the tyrosine kinase c-kit in poorly differentiated and anaplastic thyroid carcinoma.  Horm Metab Res. 2008;  40 685-691
  • 30 Dziba JM, Ain KB. Imatinib mesylate (gleevec; STI571) monotherapy is ineffective in suppressing human anaplastic thyroid carcinoma cell growth in vitro.  J Clin Endocrinol Metab. 2004;  89 2127-2135
  • 31 Dengler J, von Bubnoff N, Decker T, Peschel C, Duyster J. Combination of imatinib with rapamycin or RAD001 acts synergistically only in Bcr-Abl-positive cells with moderate resistance to imatinib.  Leukemia. 2005;  19 1835-1838
  • 32 Goudar RK, Shi Q, Hjelmeland MD, Keir ST, MacLendon RE, Wikstrand CJ, Reese ED, Conrad CA, Traxler P, Lane HA, Reardon DA, Cavenee WK, Wang XF, Bigner DD, Friedman HS, Rich JN. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition.  Mol Cancer Ther. 2005;  4 101-112
  • 33 Ikezoe T, Nishioka C, Bandobashi K, Yang Y, Kuwayama Y, Adachi Y, Takeuchi T, Koeffler HP, Taguchi H. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells.  Leuk Res. 2007;  31 673-682
  • 34 Hay N, Sonenberg N. Upstream and downstream of mTOR.  Genes Dev. 2004;  18 1926-1945
  • 35 Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR, Sini P, O'Reilly T. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor.  Clin Cancer Res. 1-3-2009;  15 1612-1622
  • 36 Lu C, Willingham MC, Furuya F, Cheng SY. Activation of phosphatidylinositol 3-kinase signaling promotes aberrant pituitary growth in a mouse model of thyroid-stimulating hormone-secreting pituitary tumors.  Endocrinology. 2008;  149 3339-3345
  • 37 Yeager N, Brewer C, Cai KQ, Xu XX, Di CA. Mammalian target of rapamycin is the key effector of phosphatidylinositol-3-OH-initiated proliferative signals in the thyroid follicular epithelium.  Cancer Res. 2008;  68 444-449
  • 38 Furuya F, Lu C, Willingham MC, Cheng SY. Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer.  Carcinogenesis. 2007;  28 2451-2458
  • 39 Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, Abraham RT, Lawrence  Jr  JC, Houghton PJ. Studies on the mechanism of resistance to rapamycin in human cancer cells.  Mol Pharmacol. 1998;  54 815-824
  • 40 Aguirre D, Boya P, Bellet D, Faivre S, Troalen F, Benard J, Saulnier P, Hopkins-Donaldson S, Zangemeister-Wittke U, Kroemer G, Raymond E. Bcl-2 and CCND1/CDK4 expression levels predict the cellular effects of mTOR inhibitors in human ovarian carcinoma.  Apoptosis. 2004;  9 797-805
  • 41 Huang S, Armstrong EA, Benavente S, Chinnaiyan P, Harari PM. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor.  Cancer Res. 2004;  64 5355-5362
  • 42 Zeng Z, Sarbassov dD, Samudio IJ, Yee KW, Munsell MF, Ellen JC, Giles FJ, Sabatini DM, Andreeff M, Konopleva M. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML.  Blood. 2007;  109 3509-3512
  • 43 Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, Hensley HH, Hamilton TC, Testa JR. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer.  Cancer Res. 2007;  67 2408-2413
  • 44 Miyakawa M, Tsushima T, Murakami H, Wakai K, Isozaki O, Takano K. Increased expression of phosphorylated p70S6 kinase and Akt in papillary thyroid cancer tissues.  Endocr J. 2003;  50 77-83
  • 45 Tam KH, Yang ZF, Lau CK, Lam CT, Pang RW, Poon RT. Inhibition of mTOR enhances chemosensitivity in hepatocellular carcinoma.  Cancer Lett. 2009;  273 201-209
  • 46 Granville CA, Memmott RM, Gills JJ, Dennis PA. Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway.  Clin Cancer Res. 2006;  12 679-689
  • 47 Marinov M, Ziogas A, Pardo OE, Tan LT, Dhillon T, Mauri FA, Lane HA, Lemoine NR, Zangemeister-Wittke U, Seckl MJ, Arcaro A. AKT/mTOR pathway activation and BCL-2 family proteins modulate the sensitivity of human small cell lung cancer cells to RAD001.  Clin Cancer Res. 2009;  15 1277-1287

Correspondence

C. Papewalis

Endocrine Cancer Center

Department of Endocrinology

Diabetes and Rheumatology

University Hospital Düsseldorf

Moorenstraße5

40225 Düsseldorf

Germany

Telefon: +49/211/810 40 38

Fax: +49/211/811 78 60

eMail: claudia.papewalis@uni-duesseldorf.de

    >