Abstract
The objective of the present study was to examine the effects of melatonin on transcripts
of isoforms of calcium/calmodulin-dependent protein kinases in rat insulinoma β-cells
INS-1. Investigations show that calcium/calmodulin-dependent kinase IV and calcium/calmodulin-dependent
kinase 2d are expressed in human and rat pancreatic islets and INS-1 cells. By application
of either forskolin or 3-isobutyl-1-methylxanthine for 6 hours, calcium spiking was
evoked and the release of insulin was increased. The expression of the calcium/calmodulin-dependent
kinase IV and calcium/calmodulin-dependent kinase 2d transcripts was significantly
increased due to forskolin or 3-isobutyl-1-methylxanthine. Acute melatonin treatment
(6 h) in the presence of either forskolin or 3-isobutyl-1-methylxanthine caused a
significant decrease in insulin release and induced significant downregulation of
calcium/calmodulin-dependent kinase IV and calcium/calmodulin-dependent kinase 2d
transcripts in INS-1 batch cultures. The attenuating effect of melatonin on transcripts
could be almost completely reversed by preincubation with the melatonin receptor antagonist
luzindole. Thus, the insulin-inhibiting effect of melatonin in INS-1 cells is associated
with significant changes in transcripts of calcium-signaling components suggesting
that melatonin influences gene expression of components, which are known to be involved
in insulin secretion or insulin gene expression.
Key words
calcium/calmodulin-dependent kinase IV - calcium/calmodulin-dependent kinase 2d -
pancreatic islet - insulin secretion
Literatur
1
Jones PM, Persaud SJ.
Protein kinases, protein phosphorylation, and the regulation of insulin secretion
from pancreatic β-cells.
Endocr Rev.
1998;
19
429-461
2
Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P.
Hierarchy of the beta-cell signals controlling insulin secretion.
Eur J Clin Invest.
2003;
33
742-750
3
Gromada J, Brock B, Schmitz O, Rorsman P.
Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential.
Basic Clin Pharmacol Toxicol.
2004;
95
252-262
4
Taskén K, Aandahl EM.
Localized effects of cAMP mediated by distinct routes of protein kinase A.
Physiol Rev.
2004;
84
137-167
5
Dyachok O, Sågetorp J, Isakov Y, Tengholm A.
cAMP oscillations restrict protein kinase A redistribution in insulin-secreting cells.
Biochem Soc Trans.
2006;
34
498-501
6
Dyachok O, Isakov Y, Sågetorp J, Tengholm A.
Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells.
Nature.
2006;
439
349-352
7
Mellström B, Savignac M, Gomez-Villafuertes R, Naranjo JR.
Ca2+ -operated transcriptional networks: molecular mechanisms and in vivo models.
Physiol Rev.
2008;
88
421-449
8
Eckert B, Schwaninger M, Knepel W.
Calcium-mobilizing insulin secretagogues stimulate transcription that is directed
by the cyclic adenosine 3′,5′-monophosphate/calcium response element in a pancreatic
islet beta-cell line.
Endocrinology.
1996;
137
225-233
9
Ban N, Yamada Y, Someya Y, Ihara Y, Adachi T, Kubota A, Watanabe R, Kuroe A, Inada A,
Miyawaki K, Sunaga Y, Shen ZP, Iwakura T, Tsukiyama K, Toyokuni S, Tsuda K, Seino Y.
Activating transcription factor-2 is a positive regulator in CaM kinase IV-induced
human insulin gene expression.
Diabetes.
2000;
49
1142-1148
10
Andrali SS, Sampley ML, Vanderford NL, Ozcan S.
Glucose regulation of insulin gene expression in pancreatic beta-cells.
Biochem J.
2008;
415
1-10
11
Niki I, Hidaka H.
Roles of intracellular Ca2+ -receptors in the pancreatic beta-cell in insulin secretion.
Mol Cell Biochem.
1999;
190
119-124
12
Matsumoto K, Fukunaga K, Miyazaki J, Shichiri M, Miyamoto E.
Ca2+ /calmodulin-dependent protein kinase II and synapsin I-like protein in mouse insulinoma
MIN6 cells.
Endocrinology.
1995;
136
3784-3793
13
Easom RA.
CaM kinase II: a protein kinase with extraordinary talents germane to insulin exocytosis.
Diabetes.
1999;
48
675-684
14
Yu X, Murao K, Sayo Y, Imachi H, Cao WM, Ohtsuka S, Niimi M, Tokumitsu H, Inuzuka H,
Wong NC, Kobayashi R, Ishida T.
The role of calcium/calmodulin-dependent protein kinase cascade in glucose up-regulation
of insulin gene expression.
Diabetes.
2004;
53
1475-1481
15
Peschke E, Peschke D.
Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets.
Diabetologia.
1998;
41
1085-1092
16
Peschke E.
Melatonin, endocrine pancreas and diabetes.
J Pineal Res.
2008;
44
26-40
17
Peschke E, Mühlbauer E, Musshoff U, Csernus VJ, Chankiewitz E, Peschke D.
Receptor MT1 mediated influence of melatonin on cAMP concentration and insulin secretion
of rat insulinoma cells INS-1.
J Pineal Res.
2002;
33
63-71
18
Peschke E, Peschke D, Hammer T, Csernus VJ.
Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused
rat pancreatic islets in vitro.
J Pineal Res.
1997;
23
156-163
19
Peschke E, Fauteck JD, Musshoff U, Schmidt F, Beckmann A, Peschke D.
Evidence for a melatonin receptor within pancreatic islets of neonate rats: functional,
autoradiographic, and molecular investigations.
J Pineal Res.
2000;
28
156-164
20
Peschke E, Bach AG, Mühlbauer E.
Parallel signaling pathways of melatonin in the pancreatic beta-cell.
J Pineal Res.
2006;
40
184-191
21
Laychock SG.
Impaired cyclic AMP response to stimuli in glucose-desensitized rat pancreatic islets.
Mol Cell Endocrinology.
1995;
113
19-28
22
Stumpf I, Mühlbauer E, Peschke E.
Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin
in pancreatic beta-cells.
J Pineal Res.
2008;
45
318-327
23
Mühlbauer E, Peschke E.
Evidence for the expression of both the MT1- and in addition, the MT2-melatonin receptor,
in the rat pancreas, islet and beta-cell.
J Pineal Res.
2007;
42
105-106
24
Peschke E, Stumpf I, Bazwinsky I, Litvak L, Dralle H, Mühlbauer E.
Melatonin and type 2 diabetes – a possible link?.
J Pineal Res.
2007;
42
350-358
25
Csernus VJ, Hammer T, Peschke D, Peschke E.
Dynamic insulin secretion from perifused rat pancreatic islets.
Cell Mol Life Sci.
1998;
54
733-743
26
Mühlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E.
Indication of circadian oscillations in the rat pancreas.
FEBS Lett.
2004;
564
91-96
27
Pfaffl MW, Horgan GW, Dempfle L.
Relative expression software tool (REST) for group-wise comparison and statistical
analysis of relative expression results in real-time PCR.
Nucleic Acids Res.
2002;
30
e36
28
Bach AG, Wolgast S, Mühlbauer E, Peschke E.
Melatonin stimulates inositol-1,4,5-trisphosphate and Ca2+ release from INS-1 insulinoma cells.
J Pineal Res.
2005;
39
316-323
29
Mühlbauer E, Bazwinsky I, Wolgast S, Klemenz A, Peschke E.
Circadian changes of ether-a-go-go-related-gene (Erg) potassium channel transcripts
in the rat pancreas and beta-cell.
Cell Mol Life Sci.
2007;
64
768-780
30
Shafer SH, Phelps SH, Williams CL.
Reduced DNA synthesis and cell viability in small cell lung carcinoma by treatment
with cyclic AMP phosphodiesterase inhibitors.
Biochem Pharmacol.
1998;
56
1229-1236
31
Hanoune J, Defer N.
Regulation and role of adenylyl cyclase isoforms.
Annu Rev Pharmacol Toxicol.
2001;
41
145-174
32
Kemp DM, Ubeda M, Habener JF.
Identification and functional characterization of melatonin Mel1a receptors in pancreatic
beta cells: potential role in incretin-mediated cell function by sensitization of
cAMP signaling.
Mol Cell Endocrinol.
2002;
191
157-166
33
Godson C, Reppert SM.
The Mel1a melatonin receptor is coupled to parallel signal transduction pathways.
Endocrinology.
1997;
138
397-404
34
Witt-Enderby PA, Masana MI, Dubocovich ML.
Physiological exposure to melatonin supersensitizes the cyclic adenosine 3′,5′-monophosphate-dependent
signal transduction cascade in Chinese hamster ovary cells expressing the human mt1
melatonin receptor.
Endocrinology.
1998;
139
3064-3071
35
Picinato MC, Haber EP, Cipolla-Neto J, Curi R, de Oliveira Carvalho CR, Carpinelli AR.
Melatonin inhibits insulin secretion and decreases PKA levels without interfering
with glucose metabolism in rat pancreatic islets.
J Pineal Res.
2002;
33
156-160
36
Usachev Y, Verkhratsky A.
IBMX induces calcium release from intracellular stores in rat sensory neurones.
Cell Calcium.
1995;
17
197-206
37
Usachev Y, Kostyuk P, Verkhratsky A.
3-Isobutyl-1-methylxanthine (IBMX) affects potassium permeability in rat sensory neurones
via pathways that are sensitive and insensitive to [Ca2+ ]in.
Pflugers Arch.
1995;
430
420-428
38
Dolphin AC, Forda SR, Scott RH.
Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited
by an adenosine analogue.
J Physiol.
1986;
373
47-61
39
Choi OH, Shamim MT, Padgett WL, Daly JW.
Caffeine and theophylline analogues: correlation of behavioral effects with activity
as adenosine receptor antagonists and as phosphodiesterase inhibitors.
Life Sci.
1988;
43
387-398
40
Fearon IM, Palmer AC, Balmforth AJ, Ball SG, Mikala G, Peers C.
Inhibition of recombinant human cardiac L-type Ca2+ channel alpha1C subunits by 3-isobutyl-1-methylxanthine.
Eur J Pharmacol.
1998;
342
353-358
41
Jockers R, Maurice P, Boutin JA, Delagrange P.
Melatonin receptors, heterodimerization, signal transduction and binding sites: what's
new?.
Br J Pharmacol.
2008;
154
1182-1195
42
Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI.
Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances
of circadian rhythms.
FASEB J.
1998;
12
1211-1220
43
Browning C, Beresford I, Fraser N, Giles H.
Pharmacological characterization of human recombinant melatonin MT(1) and MT(2) receptors.
Br J Pharmacol.
2000;
129
877-886
44
Ayoub MA, Levoye A, Delagrang EP, Jockers R.
Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand
interaction properties compared with MT2 homodimers.
Mol Pharmacol.
2004;
66
312-321
45
Suzuki Y, Zhang H, Saito N, Kojima I, Urano T, Mogami H.
Glucagon-like peptide 1 activates protein kinase C through Ca2+ -dependent activation of phospholipase C in insulin-secreting cells.
J Biol Chem.
2006;
281
28499-28507
46
Baltrusch S, Lenzen S.
Regulation of [Ca2+ ]i oscillations in mouse pancreatic islets by adrenergic agonists.
Biochem Biophys Res Commun.
2007;
363
1038-1043
47
Chaloux B, Caron AZ, Guillemette G.
Protein kinase A increases the binding affinity and the Ca2+ release activity of the inositol 1,4,5-trisphosphate receptor type 3 in RINm5F cells.
Biol Cell.
2007;
99
379-388
48
Landa Jr LR, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO,
Lohse MJ, Holz GG, Roe MW.
Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line.
J Biol Chem.
2005;
280
31294-31302
49
Slanar O, Pelisek V, Vanecek J.
Melatonin inhibits pituitary adenylyl cyclase-activating polypeptide-induced increase
in cyclic AMP accumulation and [Ca2+ ]i in cultured cells of neonatal rat pituitary.
Neurochem Int.
2000;
36
213-219
50
Vanecek J.
Inhibitory effect of melatonin on GnRH-induced LH release.
Rev Reprod.
1999;
4
67-72
51
Dai J, Inscho EW, Yuan L, Hill SM.
Modulation of intracellular calcium and calmodulin by melatonin in MCF-7 human breast
cancer cells.
J Pineal Res.
2002;
32
112-119
52
Schuster C, Williams LM, Morris A, Morgan PJ, Barrett P.
The human MT1 melatonin receptor stimulates cAMP production in the human neuroblastoma
cell line SH-SY5Y cells via a calcium-calmodulin signal transduction pathway.
J Neuroendocrinol.
2005;
1
170-178
53
Benítez-King G, Ríos A, Martínez A, Antón-Tay F.
In vitro inhibition of Ca2+ calmodulin-dependent kinase II activity by melatonin.
Biochim Biophys Acta.
1996;
1290
191-196
54
Fukunaga K, Horikawa K, Shibata S, Takeuchi Y, Miyamoto E.
Ca2+ /calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat
suprachiasmatic nucleus and its inhibition by melatonin.
J Neurosci Res.
2002;
70
799-807
55
Daniel PB, Walker WH, Habener JF.
Cyclic AMP signaling and gene regulation.
Ann Rev Nutr.
1998;
18
353-383
56
McNulty S, Ross AW, Barrett P, Hastings MH, Morgan PJ.
Melatonin regulates the phosphorylation of CREB in ovine pars tuberalis.
J Neuroendocrinol.
1994;
6
523-532
57
McNulty S, Ross AW, Shiu KY, Morgan PJ, Hastings MH.
Phosphorylation of CREB in ovine pars tuberalis is regulated both by cyclic AMP-dependent
and cyclic AMP-independent mechanisms.
J Neuroendocrinol.
1996;
8
635-645
58
McNulty S, Schurov IL, Sloper PJ, Hasting MH.
Stimuli which entrain the circadian clock of the neonatal Syrian hamster in vivo regulate
the phosphorylation of the transcription factor CREB in the suprachiasmatic nucleus
in vitro.
Eur J Neurosci.
1998;
10
1063-1072
59
von Gall C, Weaver DR, Kock M, Korf HW, Stehle JH.
Melatonin limits transcriptional impact of phosphoCREB in the mouse SCN via the Mel1a
receptor.
Neuroreport.
2000;
11
1803-1807
60
Sheynzon P, Korf HW.
Targeted deletions of Mel1a and Mel1b melatonin receptors affect pCREB levels in lactotroph
and pars intermedia cells of mice.
Neurosci Lett.
2006;
407
48-52
61
Tabuchi H, Yamamoto H, Matsumoto K, Ebihara K, Takeuchi Y, Fukunaga K, Hiraoka H,
Sasaki Y, Shichiri M, Miyamoto E.
Regulation of insulin secretion by overexpression of Ca2+ /calmodulin-dependent protein kinase II in insulinoma MIN6 cells.
Endocrinology.
2000;
141
2350-2360
62
Osterhoff M, Möhlig M, Schwanstecher M, Seufert J, Ortmann J, Schatz H, Pfeiffer AF.
Ca2+ /calmodulin-dependent protein kinase II delta2 regulates gene expression of insulin
in INS-1 rat insulinoma cells.
Cell Calcium.
2003;
33
175-184
1 Dedicated to Professor Dr. Dr. Bernd Fischer on the occasion of his 60th birthday, August 25th 2009.
Correspondence
Dr. I. Bazwinsky-Wutschke
Institute of Anatomy and Cell Biology
Martin Luther University Halle-Wittenberg
Grosse Steinstrasse 52
06097 Halle
Germany
Phone: +49/34/5557 17 10
Fax: +49/34/5557 40 53
Email: ivonne.bazwinsky@medizin.uni-halle.de