Der Diabetes mellitus ist mit vaskulären Schädigungen assoziiert, die zu vielfältigen
Erkrankungen beitragen können. Dazu gehören die diabetische Kardiopathie, Nephropathie
und Retinopathie sowie Atherosklerose und Thrombosen. Pathophysiologisch spielen mikro-
und makrovaskuläre Läsionen eine Rolle. Denn die Gefäßzellen sind den pathologisch
erhöhten Blutzuckerspiegeln am direktesten exponiert, sodass sich viele Folgen der
Hyperglykämie dort zuerst manifestieren. Dementsprechend hat die endotheliale Dysfunktion,
die durch ein Ungleichgewicht zwischen endothelialen Vasodilatatoren und -konstriktoren
gekennzeichnet ist, eine Schlüsselrolle in der Pathogenese der diabetischen Mikroangiopathie.
Eine konsequente Reduktion von Hyperglykämie, Dyslipidämie und Insulinresistenz kann
die Endothelfunktion verbessern und den Beginn vaskulärer Komplikationen verzögern.
Zudem werden frühe Interventionen im Sinne einer effektiven glykämischen Kontrolle
zur Prophylaxe von sowohl mikrovaskulären als auch makrovaskulären Komplikationen
empfohlen. Arteriellen Thrombosen wiederum kann durch eine Beeinflussung der Thrombozytenfunktion
entgegengewirkt werden.
Diabetes mellitus is associated with vascular defects that can contribute to a caleidoscope
of diseases. They include diabetic cardiopathy, neuropathy, retinopathy as well as
atherosclerosis and thrombosis. Macro- and microvascular damages play an important
role in pathophysiology. Vascular cells are most directly exhibited to the pathological
increased blood glucose levels. So many consequences of hyperglycemia can find their
first manifestation there. Endothelial dysfunction plays a key role in the pathogenesis
of diabetic microangiopathy. It is characterized by a dysbalance between endothelial
vasodilatators and vasoconstrictors. Consequent reduction of hyperglykaemia, dyslipidaemia
and insulin resistence can improve endothelial function and slow down the onset of
vascular complications. Early interventions leading to an effective glycaemic control
are recommended for the prophylaxis of both micro- und macrovascular complications.
The incidence of arterial thrombosis can be decreased by influencing platelet function.
Key words
diabetes mellitus - hyperglycaemia - dyslipidaemia - blood vessel - micro- and macrovascular
complications - cardiovascular complications
Literatur
1
Takenaka K, Yamagishi S, Matsui T. et al. .
Role of advanced glycation end products (AGEs) in thrombogenic abnormalities in diabetes.
Curr Neurovasc Res.
2006;
3
73-77
2
Orasanu G, Plutzky J..
The pathologic continuum of diabetic vascular disease.
J Am Coll Cardiol.
2009;
53
3
Kalani M..
The importance of endothelin-1 for microvascular dysfunction in diabetes.
Vasc Health Risk Manag.
2008;
4
1061-1068
4
Potenza MA, Gagliardi S, Nacci C. et al. .
Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets.
Curr Med Chem.
2009;
16
94-112
5
Forst T, Hohberg C, Pfützner A..
Cardiovascular effects of disturbed insulin activity in metabolic syndrome and in
type 2 diabetic patients.
Horm Metab Res.
2009;
41
123-131
6
Hennersdorf MG, Kelm M, Schannwell CM. et al. .
Kardiale Beteiligung bei Diabetes mellitus.
Med Klin (Munich).
2000;
95
487-495
7
Schäfer A, Bauersachs J..
Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation
in diabetes and atherosclerosis.
Curr Vasc Pharmacol.
2008;
6
52-60
8
Henry P, Richard P, Beverelli F. et al. .
Diabetic coronary disease and risk of myocardial infarction.
Arch Mal Coeur Vaiss.
1999;
92
219-223
9
Palmieri V, Tracy RP, Roman MJ. et al. .
Relation of left ventricular hypertrophy to inflammation and albuminuria in adults
with type 2 diabetes: the strong heart study.
Diabetes Care.
2003;
26
2764-2769
10
Natarajan A, Zaman AG, Marshall SM..
Platelet hyperactivity in type 2 diabetes: role of antiplatelet agents.
Diab Vasc Dis Res.
2008;
5
138-144
11
Grant PJ..
Diabetes mellitus as a prothrombotic condition.
J Intern Med.
2007;
262
157-172
12
Malý J, Simkovic M, Pecka M..
Haemocoagulation and renal insufficiency, haemocoagulation and type 2 diabetes mellitus.
Vnitr Lek.
2008;
54
452-456
13
Signori LU, Plentz RD, Irigoyen MC, Schaan BD..
The role of post-prandial lipids in atherogenesis: particularities of diabetes mellitus.
Arq Bras Endocrinol Metabol.
2007;
51
222-231
14
Nakagawa T..
A new mouse model resembling human diabetic nephropathy: uncoupling of VEGF with eNOS
as a novel pathogenic mechanism.
Clin Nephrol.
2009;
71
103-109
15
Paulus YM, Gariano RF..
Diabetic retinopathy: a growing concern in an aging population.
Geriatrics.
2009;
64
16-20
16
Craft S..
The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads
converged.
Arch Neurol.
2009;
66
300-305
17
Salifu MO, Tedla F, Aytug S. et al. .
Posttransplant diabetes and hypertension: pathophysiologic insights and therapeutic
rationale.
Curr Diab Rep.
2008;
8
221-227
18
Berkowitz KM..
Insulin resistance and preeclampsia.
Clin Perinatol.
1998;
25
873-885
19
Gæde P, Vedel P, Larsen N. et al. .
Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.
N Engl J Med.
2003;
348
383-393
20
Tschoepe D, Roesen P..
Heart disease in diabetes mellitus: a challenge for early diagnosis and intervention.
Exp Clin Endocrinol Diabetes.
1998;
106
16-24
21
Roman G, Hancu N..
Early insulin treatment to prevent cardiovascular disease in prediabetes and overt
diabetes.
Horm Metab Res.
2009;
41
116-122
22
Ali TK, El-Remessy AB..
Diabetic retinopathy: current management and experimental therapeutic targets.
Pharmacotherapy.
2009;
29
182-192
23
Morici ML, Di A Marco, Donatelli M..
Cardiovascular „risk“ and diabetes mellitus. Results of a retrospective study.
Minerva Cardioangiol.
1997;
45
459-466
Korrespondenz
Dr. Sven Andreas Jungblut
Medizinische Klinik Deutsche Klinik für Diagnostik GmbH
Aukammallee 33
65191 Wiesbaden
Email: sven.jungblut@onlinemed.de