Semin Liver Dis 2009; 29(4): 400-411
DOI: 10.1055/s-0029-1240009
© Thieme Medical Publishers

Genetic Association Studies in Drug-Induced Liver Injury

Ann K. Daly1 , Chris P. Day1
  • 1Institute of Cellular Medicine, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
13. Oktober 2009 (online)

ABSTRACT

Genetic studies on drug-induced liver injury (DILI) have proved challenging, both because of their rarity and their difficulty in replicating observed effects. However, significant progress has now been achieved by both candidate-gene and genome-wide association studies. These two approaches are considered in detail, together with examples of DILI due to specific drugs where consistent associations have been reported. Particular consideration is given to associations between antituberculosis drug-related liver injury and the “slow acetylator” genotype for N-acetyltransferase 2, amoxicillin/clavulanate-related liver injury, and the human leukocyte antigen (HLA) class II DRB1*1501 allele and flucloxacillin-related injury and the HLA class I B*5701 allele. Although these associations are drug-specific, the possibility that additional, more general susceptibility genes for DILI exist requires further investigation, ideally by genome-wide association studies involving international collaboration. The possibility of interethnic variation in susceptibility to DILI also requires further study.

REFERENCES

  • 1 Kaplowitz N. Idiosyncratic drug hepatotoxicity.  Nat Rev Drug Discov. 2005;  4(6) 489-499
  • 2 Manolio T A, Brooks L D, Collins F SA. A HapMap harvest of insights into the genetics of common disease.  J Clin Invest. 2008;  118(5) 1590-1605
  • 3 Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis.  Am J Respir Crit Care Med. 2003;  167(11) 1472-1477
  • 4 Sarma G R, Immanuel C, Kailasam S, Narayana A S, Venkatesan P. Rifampin-induced release of hydrazine from isoniazid. A possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin.  Am Rev Respir Dis. 1986;  133(6) 1072-1075
  • 5 Daly A K. Pharmacogenetics of the major polymorphic metabolizing enzymes.  Fundam Clin Pharmacol. 2003;  17(1) 27-41
  • 6 Eichelbaum M, Musch E, Castro-Parra M, Vonsassen W. Isoniazid hepatotoxicity in relation to acetylator phenotype and isoniazid metabolism.  Br J Clin Pharmacol. 1982;  14(4) P575-P576
  • 7 Sarich T C, Adams S P, Petricca G, Wright J M. Inhibition of isoniazid-induced hepatotoxicity in rabbits by pretreatment with an amidase inhibitor.  J Pharmacol Exp Ther. 1999;  289(2) 695-702
  • 8 Ohno M, Yamaguchi I, Yamamoto I et al.. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity.  Int J Tuberc Lung Dis. 2000;  4(3) 256-261
  • 9 Huang Y S, Chern H D, Su W J et al.. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis.  Hepatology. 2002;  35(4) 883-889
  • 10 Cho H J, Koh W J, Ryu Y J et al.. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis.  Tuberculosis (Edinb). 2007;  87(6) 551-556
  • 11 Vuilleumier N, Rossier M F, Chiappe A et al.. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis.  Eur J Clin Pharmacol. 2006;  62(6) 423-429
  • 12 Possuelo L G, Castelan J A, de Brito T C et al.. Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil.  Eur J Clin Pharmacol. 2008;  64(7) 673-681
  • 13 Bozok Cetintaş V, Erer O F, Kosova B et al.. Determining the relation between N-acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by molecular biologic tests.  Tuberk Toraks. 2008;  56(1) 81-86
  • 14 Daly A K. Pharmacogenetics of the cytochromes P450.  Curr Top Med Chem. 2004;  4(16) 1733-1744
  • 15 Hayashi S, Watanabe J, Kawajiri K. Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene.  J Biochem. 1991;  110(4) 559-565
  • 16 Kato S, Shields P G, Caporaso N E et al.. Cytochrome P450IIE1 genetic polymorphisms, racial variation, and lung cancer risk.  Cancer Res. 1992;  52(23) 6712-6715
  • 17 Huang Y S, Chern H D, Su W J et al.. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis.  Hepatology. 2003;  37(4) 924-930
  • 18 Roy B, Chowdhury A, Kundu S et al.. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 ‘null’ mutation.  J Gastroenterol Hepatol. 2001;  16(9) 1033-1037
  • 19 Huang Y S, Su W J, Huang Y H et al.. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury.  J Hepatol. 2007;  47(1) 128-134
  • 20 Leiro V, Fernández-Villar A, Valverde D et al.. Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population.  Liver Int. 2008;  28(6) 835-839
  • 21 Sharma S K, Balamurugan A, Saha P K, Pandey R M, Mehra N K. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment.  Am J Respir Crit Care Med. 2002;  166(7) 916-919
  • 22 Kindmark A, Jawaid A, Harbron C G et al.. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis.  Pharmacogenomics J. 2008;  8(3) 186-195
  • 23 Andrade R J, Lucena M I, Fernández M C Spanish Group for the Study of Drug-Induced Liver Disease et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period.  Gastroenterology. 2005;  129(2) 512-521
  • 24 Jinjuvadia K, Kwan W, Fontana R J. Searching for a needle in a haystack: use of ICD-9-CM codes in drug-induced liver injury.  Am J Gastroenterol. 2007;  102(11) 2437-2443
  • 25 Stricker B H, Blok A P, Claas F H, Van Parys G E, Desmet V J. Hepatic injury associated with the use of nitrofurans: a clinicopathological study of 52 reported cases.  Hepatology. 1988;  8(3) 599-606
  • 26 Berson A, Fréneaux E, Larrey D et al.. Possible role of HLA in hepatotoxicity. An exploratory study in 71 patients with drug-induced idiosyncratic hepatitis.  J Hepatol. 1994;  20(3) 336-342
  • 27 Hautekeete M L, Horsmans Y, Van Waeyenberge C et al.. HLA association of amoxicillin-clavulanate–induced hepatitis.  Gastroenterology. 1999;  117(5) 1181-1186
  • 28 O'Donohue J, Oien K A, Donaldson P et al.. Co-amoxiclav jaundice: clinical and histological features and HLA class II association.  Gut. 2000;  47(5) 717-720
  • 29 Donaldson P T, Bhatnagar P, Graham J et al.. Susceptibility to drug induced liver injury determined by HLA class II genotype. 59th Annual Meeting of the American Association for the Study of Liver Diseases. San Francisco, CA; October 31–November 4, 2008
  • 30 Andrade R J, Lucena M I, Alonso A et al.. HLA class II genotype influences the type of liver injury in drug-induced idiosyncratic liver disease.  Hepatology. 2004;  39(6) 1603-1612
  • 31 Lucena M I, Andrade R J, Martínez C Spanish Group for the Study of Drug-Induced Liver Disease et al. Glutathione S-transferase M1 and T1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury.  Hepatology. 2008;  48(2) 588-596
  • 32 Russmann S, Kaye J A, Jick S S, Jick H. Risk of cholestatic liver disease associated with flucloxacillin and flucloxacillin prescribing habits in the UK: cohort study using data from the UK General Practice Research Database.  Br J Clin Pharmacol. 2005;  60(1) 76-82
  • 33 Daly A K, Donaldson P T, Bhatnagar P et al.. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin.  Nat Genet. 2009;  41(7) 816-819
  • 34 Mallal S, Phillips E, Carosi G PREDICT-1 Study Team et al. HLA-B*5701 screening for hypersensitivity to abacavir.  N Engl J Med. 2008;  358(6) 568-579
  • 35 Björnsson E, Jerlstad P, Bergqvist A, Olsson R. Fulminant drug-induced hepatic failure leading to death or liver transplantation in Sweden.  Scand J Gastroenterol. 2005;  40(9) 1095-1101
  • 36 Boelsterli U A. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity.  Toxicol Appl Pharmacol. 2003;  192(3) 307-322
  • 37 Boelsterli U A, Zimmerman H J, Kretz-Rommel A. Idiosyncratic liver toxicity of nonsteroidal antiinflammatory drugs: molecular mechanisms and pathology.  Crit Rev Toxicol. 1995;  25(3) 207-235
  • 38 Aithal G P, Daly A K, Leathart J, Yuanneng C P, Day C P. Promoter polymorphisms of interleukin-10 (IL-10) and interleukin-4 (IL-4) predict the risk of diclofenac-induced hepatotoxicity.  Gastroenterology. 2000;  118(4) 1077
  • 39 Daly A K, Aithal G P, Leathart J B, Swainsbury R A, Dang T S, Day C P. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes.  Gastroenterology. 2007;  132(1) 272-281
  • 40 Haenisch S, Zimmermann U, Dazert E et al.. Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex.  Pharmacogenomics J. 2007;  7(1) 56-65
  • 41 Choi J H, Ahn B M, Yi J et al.. MRP2 haplotypes confer differential susceptibility to toxic liver injury.  Pharmacogenet Genomics. 2007;  17(6) 403-415
  • 42 Deng X, Stachlewitz R F, Liguori M J et al.. Modest inflammation enhances diclofenac hepatotoxicity in rats: role of neutrophils and bacterial translocation.  J Pharmacol Exp Ther. 2006;  319(3) 1191-1199
  • 43 Bourdi M, Masubuchi Y, Reilly T P et al.. Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase.  Hepatology. 2002;  35(2) 289-298
  • 44 Bourdi M, Eiras D P, Holt M P et al.. Role of IL-6 in an IL-10 and IL-4 double knockout mouse model uniquely susceptible to acetaminophen-induced liver injury.  Chem Res Toxicol. 2007;  20(2) 208-216
  • 45 Yee S B, Bourdi M, Masson M J, Pohl L R. Hepatoprotective role of endogenous interleukin-13 in a murine model of acetaminophen-induced liver disease.  Chem Res Toxicol. 2007;  20(5) 734-744
  • 46 Grove J, Daly A K, Bassendine M F, Day C P. Association of a tumor necrosis factor promoter polymorphism with susceptibility to alcoholic steatohepatitis.  Hepatology. 1997;  26(1) 143-146
  • 47 Grove J, Daly A K, Bassendine M F, Gilvarry E, Day C P. Interleukin 10 promoter region polymorphisms and susceptibility to advanced alcoholic liver disease.  Gut. 2000;  46(4) 540-545
  • 48 Aithal G P, Ramsay L, Daly A K et al.. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity.  Hepatology. 2004;  39(5) 1430-1440
  • 49 Pachkoria K, Lucena M I, Crespo E Spanish Group for the Study of Drug-Induced Liver Disease (Grupo de Estudio para las Hepatopatías Asociadas a Medicamentos (GEHAM)) et al. Analysis of IL-10, IL-4 and TNF-alpha polymorphisms in drug-induced liver injury (DILI) and its outcome.  J Hepatol. 2008;  49(1) 107-114
  • 50 Lang C, Meier Y, Stieger B et al.. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury.  Pharmacogenet Genomics. 2007;  17(1) 47-60
  • 51 Bhatnagar P, Day C P, Aithal G et al.. Genetic variants of hepatic transporters and susceptibility to drug induced liver injury.  Toxicology. 2008;  253(1–3) 10
  • 52 Hirschhorn J N. Genomewide association studies—illuminating biologic pathways.  N Engl J Med. 2009;  360(17) 1699-1701
  • 53 International HapMap Consortium . A haplotype map of the human genome.  Nature. 2005;  437(7063) 1299-1320
  • 54 Hardy J, Singleton A. Genomewide association studies and human disease.  N Engl J Med. 2009;  360(17) 1759-1768
  • 55 Wellcome Trust Case Control Consortium . Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.  Nature. 2007;  447(7145) 661-678
  • 56 Hirschfield G M, Liu X, Xu C et al.. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants.  N Engl J Med. 2009;  360(24) 2544-2555
  • 57 Spencer C CA, Su Z, Donnelly P, Marchini J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip.  PLoS Genet. 2009;  5(5) e1000477
  • 58 Nelson M R, Bacanu S A, Mosteller M et al.. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions.  Pharmacogenomics J. 2009;  9(1) 23-33
  • 59 de Bakker P I, Ferreira M A, Jia X, Neale B M, Raychaudhuri S, Voight B F. Practical aspects of imputation-driven meta-analysis of genome-wide association studies.  Hum Mol Genet. 2008;  17(R2) R122-R128
  • 60 Novembre J, Johnson T, Bryc K et al.. Genes mirror geography within Europe.  Nature. 2008;  456(7218) 98-101
  • 61 Campbell C D, Ogburn E L, Lunetta K L et al.. Demonstrating stratification in a European American population.  Nat Genet. 2005;  37(8) 868-872
  • 62 Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies.  Nat Genet. 2006;  38(8) 904-909
  • 63 Tian C, Gregersen P K, Seldin M F. Accounting for ancestry: population substructure and genome-wide association studies.  Hum Mol Genet. 2008;  17(R2) R143-R150
  • 64 Devlin B, Roeder K. Genomic control for association studies.  Biometrics. 1999;  55(4) 997-1004
  • 65 Link E, Parish S, Armitage J SEARCH Collaborative Group et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study.  N Engl J Med. 2008;  359(8) 789-799
  • 66 Hoofnagle J H. Drug-induced liver injury network (DILIN).  Hepatology. 2004;  40(4) 773
  • 67 Molokhia M, McKeigue P. EUDRAGENE: European collaboration to establish a case-control DNA collection for studying the genetic basis of adverse drug reactions.  Pharmacogenomics. 2006;  7(4) 633-638
  • 68 Goldstein D B. Common genetic variation and human traits.  N Engl J Med. 2009;  360(17) 1696-1698
  • 69 Ghodke Y, Joshi K, Chopra A, Patwardhan B. HLA and disease.  Eur J Epidemiol. 2005;  20(6) 475-488
  • 70 Pachkoria K, Lucena M I, Ruiz-Cabello F, Crespo E, Cabello M R, Andrade R J. Spanish Group for the Study of Drug-Induced Liver Disease (Grupo de Estudio para las Hepatopatías Asociadas a Medicamentos) . Genetic polymorphisms of CYP2C9 and CYP2C19 are not related to drug-induced idiosyncratic liver injury (DILI).  Br J Pharmacol. 2007;  150(6) 808-815
  • 71 Green V J, Pirmohamed M, Kitteringham N R, Knapp M J, Park B K. Glutathione S-transferase mu genotype (GSTM1*0) in Alzheimer's patients with tacrine transaminitis.  Br J Clin Pharmacol. 1995;  39(4) 411-415
  • 72 Dupont I, Bodénez P, Berthou F, Simon B, Bardou L G, Lucas D. Cytochrome P-450 2E1 activity and oxidative stress in alcoholic patients.  Alcohol Alcohol. 2000;  35(1) 98-103
  • 73 Watanabe I, Tomita A, Shimizu M et al.. A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus.  Clin Pharmacol Ther. 2003;  73(5) 435-455
  • 74 Ueda K, Ishitsu T, Seo T et al.. Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity.  Pharmacogenomics. 2007;  8(5) 435-442
  • 75 De Sousa M, Pirmohamed M, Kitteringham N R, Woolf T, Park B K. No association between tacrine transaminitis and the glutathione transferase theta genotype in patients with Alzheimer's disease.  Pharmacogenetics. 1998;  8(4) 353-355
  • 76 Acuña G, Foernzler D, Leong D et al.. Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity.  Pharmacogenomics J. 2002;  2(5) 327-334
  • 77 Carr D F, Alfirevic A, Tugwood J D et al.. Molecular and genetic association of interleukin-6 in tacrine-induced hepatotoxicity.  Pharmacogenet Genomics. 2007;  17(11) 961-972

Professor Chris P DayM.D. Ph.D. F.Med.Sci. 

Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place

Newcastle upon Tyne NE2 4HH, UK

eMail: C.P.Day@ncl.ac.uk

    >