Zusammenfassung
Das sympathische Nervensystem ist wesentlich an der Kreislaufregulation
beteiligt und bietet pharmakotherapeutische und nicht-pharmakologische
Interventionsmöglichkeiten zur Behandlung der arteriellen
Hypertonie. Aktuelle Forschungsergebnisse zur Organisation der Adrenorezeptoren
in Multiproteinkomplexen haben unsere Kenntnisse zur Blutdruckregulation erweitert
und können der pharmakologischen und genetischen Forschung
auf dem Gebiet der Hypertensiologie neue Impulse verleihen. Neue Entwicklungen
der biomedizinischen Technik ermöglichen nicht-pharmakologische
sympathikolytische Interventionen, die insbesondere bei pharmakotherapieresistenten
Hypertonieformen die Behandlungsmöglichkeiten erweitern.
Summary
The sympathetic nervous system importantly contributes to the
control of the circulation and is an important therapeutic target
to lower arterial pressure in hypertensive patients. Recent advances
in the understanding of the organization of adrenergic receptors
in multiprotein complexes have improved our understanding of arterial pressure
control and may have impact on drug development and genetic research
in the field of hypertension. New developments in biomedical technology
allow for non-pharmacological interventions to reduce sympathetic
activity and provide new options to treat hypertensive patients who
are resistant to antihypertensive drug therapy.
Schlüsselwörter
arterielle Hypertonie - Antihypertonika - Sympathikusaktivierung
Keywords
arterial hypertension - antihypertensive drugs - sympathetic activation
Literatur
- 1
Augustyniak R A, Tuncel M, Zhang W, Toto R D, Victor R G.
Sympathetic overactivity as a
cause of hypertension in patients with chronic renal failure.
J Hypertens.
2002;
20
3-9
- 2
Bibutay A M, Lillehei C W.
Surgical
treatment of hypertension with reference to baropacing.
Am
J Cardiol.
1966;
17
663-667
- 3
DiBona G F, Kopp U C.
Neural control
of renal function.
Physiol Rev.
1997;
77
75-197
- 4
Grisk O, Rettig R.
Interactions between the
sympathetic nervous system and the kidneys in arterial hypertension.
Cardiovasc Res.
2004;
61
238-246
- 5
Gu S, Cifelli C, Wang S, Heximer S P.
RGS proteins: identifying new GAPs in the
understanding of blood pressure regulation and cardiovascular function.
Clin Sci.
2009;
116
391-399
- 6
Hague C, Bernstein L S, Raminemi S, Chen R, Minneman K P, Hepler J R.
Selective inhibition
of α1A-adrenergic receptor signaling by RGS2
association with the receptor third intracellular loop.
J
Biol Chem.
2005;
280
27289-27295
- 7
Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, Dietl K H, Rahn K H.
Sympathetic nerve
activity in end-stage renal disease.
Circulation.
2002;
106
1974-1979
- 8
Heximer S P, Knutsen R H, Sun X, Kaltenbronn K M, Rhee M -H, Peng N, Oliveira-dos-Santos A,
Penninger J M, Muslin A J, Steinberg T H, Wyss J M, Mecham R P, Blumer K J.
Hypertension
and prolonged vasoconstrictor signaling in RGS2-deficient mice.
J Clin Invest.
2003;
111
445-452
- 9
Illing K A, Levy M, Sanchez L, Trachiotis G D, Shanley C, Irwin E, Pertile T, Kieval R,
Cody R.
An implantable carotid sinus stimulator for drug-resistant hypertension:
surgical technique and short-term outcome from the multicenter phase
II Rheos feasibility trial.
J Vasc Surg.
2006;
44
1213-1218
- 10
Kirstein S L, Insel P A.
Autonomic nervous
system pharmacogenomics: a progress report.
Pharmacol
Rev.
2004;
56
31-52
- 11
Krum H, Schlaich M, Whitbourn R, Sobotka P A, Sadowski J, Bartus K, Kapelak B, Walton A,
Sievert H, Thambar S, Abraham W T, Esler M.
Catheter-based renal sympathetic
denervation for resistant hypertension: a multicentre safety and
proof-of-priciple cohort study.
Lancet.
2009;
373
1275-1281
- 12 Leitlinien zur Behandlung der
arteriellen Hypertonie. Deutsche Hochdruckliga e. V. DHL® – Deutsche
Hypertonie Gesellschaft, Heidelberg. 2008
- 13
Levy D, Ehret G B, Rice K, Verwoert G C, Launer L J, Dehghan A. et al .
Genome-wide association study of blood pressure and hypertension.
Nat Genetics.
2009;
41
677-687
- 14
Lindholm L H, Carlberg B, Samuelsson O.
Should β blockers remain the first choice in the treatment
of primary hypertension? A meta-analysis.
Lancet.
2005;
366
1545-1553
- 15
Lohmeier T E, Irwin E D, Rossing M A, Serdar D J, Kieval R S.
Prolonged activation of the baroreflex
produces sustained hypotension.
Hypertension.
2004;
43
306-311
- 16
Lohmeier T E, Hidebrandt D A, Dwyer T M, Iliescu R, Irwin E D, Cates A W.
Prolonged activation of the baroreflex deceases arterial pressure even
during adrenergic blockade.
Hypertension.
2009;
53
833-838
- 17
Lyssand J S, DeFino M C, Tang X, Hertz A L, Feller D G, Wacker J L, Adams M, Hague C.
Blood pressure
is regulated by an α1D-adrenergic receptor/dystrophin
signalosome.
J Biol Chem.
2008;
283
18792-18800
- 18
Newton-Cheh C, Johnson T, Gateva V, Tobin M D, Bochud M, Coin L. et al .
Genome-wide
association study identifies eight loci associated with blood pressure.
Nat Genetics.
2009;
41
666-676
- 19
Scheffers I, Schmidli J, Kroon A A, Tordoir J, Mohaupt M, Allemann Y, Jordan J, Engeli S,
Liebeskind U, Luft F C, Eckert S, Hansky B, Baal T, de Leeuw P W.
Sustained blood
pressure reduction by baroreflex hypertension therapy with a chronically
implanted system: 2-year data from the Rheos Debut-HT study in patients
with resistant hypertension.
J Hypertens.
2008;
26
(Suppl 1)
S19
- 20
Suzuki F, Morishima S, Tanaka T, Muramatsu I.
Snapin, a new regulator
of receptor signaling, augments α1A-adrenoceptor-operated
calcium influx through TRPC6.
J Biol Chem.
2007;
282
29563-29573
PD Dr. med. Olaf Grisk
Institut für Physiologie, Universitätsklinikum
Greifswald
Greifswalder Str. 11c
17495 Karlsburg
Phone: 49–3834–8619300
Fax: 49–3834–8619310
Email: grisko@uni-greifswald.de