neuroreha 2009; 1(1): 28-32
DOI: 10.1055/s-0029-1242445
Schwerpunkt Repetition

© Georg Thieme Verlag KG Stuttgart · New York

Komplexes aufgabenspezifisches repetitives Training bei zentralmotorischen Störungen

Caroline Renner, Horst Hummelsheim
Further Information

Publication History

Publication Date:
09 November 2009 (online)

Zusammenfassung

Erlernen von Fähigkeiten verändert die Funktion des Gehirns – dies gilt sowohl für Sportler und Pianisten als auch für den Patienten nach Hirninfarkt während eines intensiven, sich steigernden, repetitiven sensomotorischen Trainings der paretischen Extremitäten. Der vorliegende Artikel gibt einen Einblick in die Grundlagen und die praktische Durchführung des repetitiven Trainings. Entscheidend ist, dass der Patient das repetitive Training aktiv mehrmals täglich durchführt und sich die Anforderungen des Trainings und/oder die Komplexität der Aufgabe parallel zur Verbesserung der motorischen Leistungen steigern: Der Patient übt stets an seiner individuellen Leistungsgrenze. Zudem darf die Auswahl der Trainingsinhalte keinesfalls stereotyp erfolgen, sondern Therapeuten sollten diese an die individuellen Funktionsstörungen bzw. die Bedürfnisse des Patienten anpassen.

Literatur

  • 01 Asanuma H, Keller A. Neuronal mechanisms of motor learning in mammals.  Neuroreport. 1991;  2 217-224
  • 02 Asanuma H, Pavlides C. Neurobiological basis of motor learning in mammals.  Neuroreport. 1997;  8 i-vi
  • 03 Barbay S, Plautz E J, Friel K M. et al. . Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys .  Exp Brain Res. 2006;  169(1) 106-116
  • 04 Brogardh C, Sjölund B H. Constraint-induced movement therapy in patients with stroke: a pilot study on effects of small group training and of extended mitt use.  Clinical Rehabil. 2006;  20 218-227
  • 05 Bütefisch C, Hummelsheim H, Denzler P. et al. . Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand.  J. Neurol. Sci.. 1995;  130 59-68
  • 06 Bütefisch C M, Davis B C, Wise S P. et al. . Mechanisms of use-dependent plasticity in the human motor cortex.  Proc Natl Acad Sci USA. 2000;  97 3661-3665
  • 07 Classen J, Liepert J, Wise S P. et al. . Rapid plasticity of human cortical movement representation induced by practice.  J Neurophysiol. 1998;  79(2) 1117-1123
  • 08 Dromerick A W, Lang C E, Birkenmeier R L. Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS). A single-center RCT.  Neurology. 2009;  73(3) 195-201
  • 09 Feys H, Weerdt W, Selz B. Effect of a therapeutic intervention for hemiplegic upper limb in the acute phase after stroke.  Stroke. 1998;  29 785-792
  • 10 Feys H, Weerdt W, Werbeke G. et al. . Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: a 5-year follow-up study of a randomized trial.  Stroke. 2004;  35 924-929
  • 11 French B, Thomas L H, Leathley M J. Repetitive task training for improving functional ability after stroke. Cochrane Database of Systematic Reviews Art. No.: CD006073. DOI: 10.1002/14651858.CD006073.pub2 2007 Issue 4
  • 12 Gauthier L V, Taub E, Perkins C. et al. . Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke.  Stroke. 2008;  39(5) 1520-1525
  • 13 Hauptmann B, Hummelsheim M. Facilitation of motor evoked potentials in hand extensor muscles of stroke patients: correlation to the level of voluntary contraction.  Electroencephalogr Clin Neurophysiol. 1996;  101(5) 387-394
  • 14 Hesse S, Bertelt C, Jahnke M T. et al. . Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients.  Stroke. 1995;  26 976-981
  • 15 Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects. 1999; 80: 421–427.  Arch Phys Med Rehabil.. 1991;  80 421-427
  • 16 Hummelsheim M, Maier-Loth M L, Eickhof C. The functional value of electrical muscle stimulation for the rehabilitation of the hand in stroke patients.  Scand J Rehabil Med. . 1997;  29(1) 3-10
  • 17 Kaelin-Lang A, Sawaki L, Cohen L G. Role of voluntary drive in encoding an elementary motor memory.  J Neurophysiol. 2005;  93(2) 1099-1103
  • 18 Krakauer J W. Motor learning: its relevance to stroke recovery and neurorehabilitation.  Curr Opin Neurol.. 2006;  19(1): 84-90
  • 19 Kwakkel G, Wagenaar R, Twisk J. et al. . Intensity of leg and arm training after primary middle cerebral artery stroke: a randomised trial.  Lancet. 1999;  354 191-196
  • 20 Kwakkel G, Kollen B J, Wagenaar R C. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial.  J Neurol Neurosurg Psychiatry. 2002;  72(4) 473-479
  • 21 Liepert J, Bauder H, Wolfgang H R. et al. . Treatment-induced cortical reorganization after stroke in humans.  Stroke. 2000;  31(6) 1210-1216
  • 22 Lindberg P, G , Schmitz C. et al. . Use-dependent up- and down-regulation of sensorimotor brain circuits in stroke patients.  Neurorehabil Neural Repair. 2007;  21(4) 315-326
  • 23 Lotze M, Braun C, Birbaumer N. et al. . Motor learning elicited by voluntary drive.  Brain. 2003;  126(Pt 4) 86-872
  • 24 Merzenich M M, Nelson R J, Stryker M P. et al. . Somatosensory cortical map changes following digit amputation in adult monkeys.  J Comp Neurol. 1984;  224 591-605
  • 25 Miltner W H, Bauder H, Sommer M. et al. . Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication.  Stroke. 1999;  30 586-592
  • 26 Moore J. Neuroanatomical considerations relating to the recovery of function following brain injury. In: Bach-y-Rita P (ed.) Recovery of function: theoretical considerations for brain injury rehabilitation Huber Verlag; Bern 1980: 9-91
  • 27 Nudo R J, Milliken G W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys.  J Neurophysiol. 1996;  75 2144-2149
  • 28 Nudo R J, Milliken G W, Merzenich M M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys.  J Neurosci. 1996;  16(2) 785-807
  • 29 Page S J, Levine P, Leonard A. Modified contraint induced therapy in acute stroke: a randomized controlled pilot study.  Neurorehabil Neural Repair. 2005;  19 27-32
  • 30 Platz T, Winter T, Muller N. et al. . Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial.  Arch. Phys. Med. Rehabil. 2001;  82 961-968
  • 31 Sterr A, Elbert T, Taub E. Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: an exploratory study. Arch.  Phys. Med. Rehabil. 2002;  83 1374-1377
  • 32 Sirtori V, Gatti R, Corbetta D. Constraint-induced movement therapy for upper extremities in stroke patients (Protocol). Cochrane Database of Systematic Reviews CD004433. DOI: 10.1002/14651858.CD004433 2003 Issue 4
  • 33 Taub E, Miller N E, Novack T A. et al. . Technique to improve chronic motor deficit after stroke.  Arch Phys Med Rehabil. 1993;  74 347-354
  • 34 Winstein C J, Rose D K, Tan S M. et al. . A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: A pilot study of immediate and long-term outcomes.  Arch Phys Med Rehabil. 2004;  85(4) 620-628
  • 35 Woldag H, Waldmann G, Heuschkel G. et al. . Is the repetitive training of complex hand and arm movements beneficial for motor recovery in stroke patients?.  Clin Rehabil. 2003;  17(7) 723-730
  • 36 Woldag H, Stupka K, Hummelsheim H. The repetitive training of complex hand and arm movements with shaping is beneficial for motor improvement in stroke patients. Neurorehabilitation and Neural Repair. submitted. 
  • 37 Wolf S L, Winstein C J, Miller J P. et al. . Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial.  Lancet Neurol. 2008;  7 33-40
  • 38 Woodlee M T, Schallert T. The interplay between behaviour and neurodegeneration in rat models of Parkinson’s disease and stroke.  Restorative Neurology and Neuroscience. 2004;  22 153-161

Dr. med. Caroline I. E.  RennerOberärztin, Fachärztin für Neurologie
Prof. Dr. med. habil. Horst  Hummelsheimärztlicher Direktor, Professor für Neurologische Rehabilitation an der Universität Leipzig

Neurologisches Rehabilitationszentrum Leipzig

Universität Leipzig

Muldentalweg 1

04828 Bennewitz

Phone: 03425/888197

Fax: 03425/888190

Email: renner@sachsenklinik.de

    >