Zusammenfassung
Ziel: Vergleich der direkten Kosten von 2 diagnostischen Algorithmen für das prätherapeutische
TNM-Staging des Rektumkarzinoms. Material und Methoden: In einer Studie mit 33 Patienten (mittleres Alter 62,5 Jahre) wurden direkte und
variable Kosten eines sequenziellen multimodalen Algorithmus (Rektoskopie, endoskopischer
und abdominaler Ultraschall, Thorax-Röntgen, CT bei Verdacht auf fokale Leberläsion
oder Lungenrundherd) mit denen eines neuen Algorithmus aus Rektoskopie und MRT in
einem Ganzkörperscanner verglichen. Die MRT beinhaltete T 2w-Sequenzen des Rektums,
3-D-T1w-Sequenzen der Leber und des Thorax nach Bolusinjektion von gadoxetic acid,
und späte Phasen der Leber im organspezifischen Kontrast. Die Arbeitsprozesse, die
verwendeten Materialien und die Arbeitszeit der involvierten Personalrollen wurden
anhand von Interviews der Prozessverantwortlichen (Chirurg, Gastroenterologe, 2 Radiologen)
dokumentiert. Die Personal- und Materialkosten wurden mittels Tarifverträgen und Daten
aus dem Einkauf bestimmt. Die direkten Festkosten wurden anhand von Preisangaben der
Hersteller berechnet. Ergebnisse: Die mittlere MR-Untersuchungszeit betrug 55 min. Die CT wurde bei 19 / 33 Patienten
(57 %) durchgeführt und führte zu einer Verlängerung des stationären Aufenthalts um
einen Tag (Kosten 374 €). Die Modalitäten- und Materialkosten lagen für die MRT höher
(Modalitäten 116 versus 30 €, Material 159 versus 60 € pro Patient). Die Personalkosten
lagen für die MRT deutlich niedriger (436 versus 732 € pro Patient). Insgesamt betrug
der Kostenvorteil der MRT gegenüber dem sequenziellen Algorithmus 31,3 % (711 versus
1035 €). Schlussfolgerung: Im präoperativen TNM-Staging von Patienten mit einem Rektumkarzinom könnten durch
die MRT deutliche Kostenvorteile erzielt werden.
Abstract
Purpose: To compare the direct costs of two diagnostic algorithms for pretherapeutic TNM staging
of rectal cancer. Materials and Methods: In a study including 33 patients (mean age: 62.5 years), the direct fixed and variable
costs of a sequential multimodal algorithm (rectoscopy, endoscopic and abdominal ultrasound,
chest X-ray, thoracic/abdominal CT in the case of positive findings in abdominal ultrasound
or chest X-ray) were compared to those of a novel algorithm of rectoscopy followed
by MRI using a whole-body scanner. MRI included T 2w sequences of the rectum, 3D T
1w sequences of the liver and chest after bolus injection of gadoxetic acid, and delayed
phases of the liver. The personnel work times, material items, and work processes
were tracked to the nearest minute by interviewing those responsible for the process
(surgeon, gastroenterologist, two radiologists). The costs of labor and materials
were determined from personnel reimbursement data and hospital accounting records.
Fixed costs were determined from vendor pricing. Results: The mean MRI time was 55 min. CT was performed in 19 / 33 patients (57 %) causing
an additional day of hospitalization (costs 374 €). The costs for equipment and material
were higher for MRI compared to sequential algorithm (equipment 116 vs. 30 €; material
159 vs. 60 € per patient). The personnel costs were markedly lower for MRI (436 vs.
732 € per patient). Altogether, the absolute cost advantage of MRI was 31.3 % (711
vs. 1035 € for sequential algorithm). Conclusion: Substantial savings are achievable with the use of whole-body MRI for the preoperative
TNM staging of patients with rectal cancer.
Key words
MR imaging - CT spiral - colorectal carcinoma - cost-cost analysis (CCA) - gadoxetic
acid - total mesorectal excision (TME)
References
1
Center M M, Jemal A, Smith R A et al.
Worldwide variations in colorectal cancer.
CA Cancer J Clin.
2009;
59
366-378
2 Cancer Research UK .UK cancer incidence statistics for common cancers. http://info.cancerresearchuk.org/cancerstats/incidence/commoncancers/ assessed March 30, 2010
3
Jemal A, Siegel R, Ward E et al.
Cancer statistics, 2009.
CA Cancer J Clin.
2009;
59
225-249
4
Lippert H, Gastinger I.
Medical care of patients with rectal carcinoma in Germany.
Dtsch Arztebl.
2006;
103
A 2704-A2709
5
Heald R J, Husband E M, Ryall R D.
The mesorectum in rectal cancer surgery – the clue to pelvic recurrence?.
Br J Surg.
1982;
69
613-616
6
Schmiegel W, Reinacher-Schick A et al.
Update S 3-guideline ”colorectal cancer” 2008.
Z Gastroenterol.
2008;
46
799-840
7
Beets-Tan R G, Beets G L, Vliegen R F et al.
Accuracy of magnetic resonance imaging in prediction of tumor-free resection margin
in rectal cancer surgery.
Lancet.
2001;
357
497-504
8
Beetan R G, Beets G L.
Rectal cancer: review with emphasis on MR imaging.
Radiology.
2004;
232
335-46
9
Brown G, Radcliffe A G, Newcombe R G et al.
Preoperative assessment of prognostic factors in rectal cancer using high-resolution
magnetic resonance imaging.
Br J Surg.
2003;
90
355-364
10
Heald R J, O’Neill B D, Moran B et al.
MRI in predicting curative resection of rectal cancer: new dilemma in multidisciplinary
team management.
BMJ.
2006;
333
808
11
Bissett I P, Fernando C C, Hough D M et al.
Identification of the fascia propria by magnetic resonance imaging and its relevance
to preoperative assessment of rectal cancer.
Dis Colon Rectum.
2001;
44
259-265
12
Iafrate F, Laghi A, Paolantonio P et al.
Preoperative staging of rectal cancer with MR Imaging: correlation with surgical and
histopathologic findings.
Radiographics.
2006;
26
701-714
13
Klessen C, Rogalla P, Taupitz M.
Local staging of rectal cancer: the current role of MRI.
Eur Radiol.
2007;
17
379-389
14
Purkayastha S, Tekkis P P, Athanasiou T et al.
Diagnostic precision of magnetic resonance imaging for preoperative prediction of
the circumferential margin involvement in patients with rectal cancer.
Colorectal Dis.
2007;
9
402-11
15
Huppertz A, Balzer T, Blakeborough A et al.
Improved detection of focal liver lesions at MR imaging: Multicenter comparison of
gadoxetic acid-enhanced MR images with intraoperative findings.
Radiology.
2004;
230
266-275
16
Bluemke D A, Sahani D, Amendola M et al.
Efficacy and safety of MR imaging with liver-specific contrast agent: U. S. multicenter
phase III study.
Radiology.
2005;
237
89-98
17
Frericks B B, Meyer B C, Martus P et al.
MRI of the thorax during whole-body MRI: evaluation of different MR sequences and
comparison to thoracic multidetector computed tomography (MDCT).
J Magn Reson Imaging.
2008;
27
538-545
18
Tanimoto A, Lee J M, Murakami T et al.
Consensus report of the 2nd International Forum for Liver MRI.
Eur Radiol.
2009;
Suppl 5
975-989
19 Schöffski O. Grundformen Gesundheitsökonomischer Evaluationen. In Schöffski O,
der Graf S chulenburg JM, (eds) Gesundheitsökonomische Evaluationen.. Berlin, Heidelberg,
New York: Springer; 2008: 65-94
20
Blackmore C C, Magid D J.
Methodologic evaluation of the radiology cost-effectiveness literature.
Radiology.
1997;
203
87-91
21
Otero H J, Rybicki F J, Greenberg von D et al.
Twenty years of cost-effectiveness analysis in medical imaging: are we improving?.
Radiology.
2008;
249
753-755
22
Poon C S.
A brief commentary on cost-effectiveness analysis in radiologic research.
Am J Roentgenol.
2008;
191
1308-1319
23
Eisenberg J M.
Clinical economics: a guide to economic analysis of clinical practices.
JAMA.
1989;
262
2879-2886
24
Brown G, Davies S, Williams G T et al.
Effectiveness of preoperative staging in rectal cancer: digital rectal examination,
endoluminal ultrasound or magnetic resonance imaging?.
Br J Cancer.
2004;
91
23-29
25
Herborn C U, Unkel C, Vogt F M et al.
Whole-body MRI for staging patients with head and neck squamous cell carcinoma.
Acta Otolaryngol.
2005;
125
1224-1229
26
Müller-Horvat C, Radny P, Eigentler T K et al.
Prospective comparison of the impact on treatment decisions of whole-body magnetic
resonance imaging and computed tomography in patients with metastatic malignant melanoma.
Eur J Cancer.
2006;
42
342-350
27
Schmidt G P, Baur-Melnyk A, Haug A et al.
Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body
MRI at 1.5 and 3T compared to FDG-PET-CT.
Eur J Radiol.
2008;
65
47-58
28
Schmidt G P, Baur-Melnyk A, Haug A et al.
Whole-body MRI at 1.5T and 3T compared with FDG-PET-CT for the detection of tumour
recurrence in patients with colorectal cancer.
Eur Radiol.
2009;
19
1366-1378
29
Plathow C, Walz M, Lichy M P et al.
Cost considerations for whole-body MRI and PET/CT as part of oncologic staging.
Radiologe.
2008;
48
384-396
30
Cohen M D, Hawes D R, Hutchins G D et al.
Activity-based cost analysis: a method of analyzing the financial and operating performance
of academic radiology departments.
Radiology.
2000;
215
708-716
31
Klose K J, Böttcher J.
”Activity based costing” in radiology.
Radiologe.
2002;
42
369-375
32
Halavaara J, Breuer J, Ayuso C et al.
Liver tumor characterization: comparison between liver-specific gadoxetic acid disodium-enhanced
MRI and biphasic CT -- a multicenter trial.
J Comput Assist Tomogr.
2006;
30
345-54
33
Polignano F M, Quyn A J, Figueiredo R S et al.
Laparoscopic versus open liver segmentectomy: prospective, case-matched, intention-to-treat
analysis of clinical outcomes and cost effectiveness.
Surg Endosc.
2008;
22
2564-2570
34
Topal de B, Vromman K, Aerts R et al.
Hospital cost categories of one-stage versus two-stage management of common bile duct
stones.
Surg Endosc.
2010;
24
413-416
35
Loose R W, Popp U, Wucherer M et al.
Medical radiation exposure and justification at a large teaching hospital: comparison
of radiation-related and disease-related risks.
Röntgenstr Fortschr.
2010;
182
66-70
36
Heyer C M, Peters S, Lemburg S.
Structure of the meeting of the german radiological society and scientific discourse
pertaining to radiation dose and dose reduction: an analysis of 1998 – 2008.
Röntgenstr Fortschr.
2009;
181
1065-1072
37
Delcò F, Egger R, Bauerfeind P et al.
Hospital health care resource utilization and costs of colorectal cancer during the
first 3-year period following diagnosis in Switzerland.
Aliment Pharmacol Ther.
2005;
21
615-622
38
Busch H P.
Benchmarking of radiological departments – starting point for successful process optimization.
Röntgenstr Fortschr.
2010;
182
221-228
39
Ketelsen D, Röthke M, Aschoff P et al.
Detection of bone metastasis of prostate cancer – comparison of whole-body MRI and
bone scintigraphy.
Röntgenstr Fortschr.
2008;
180
746-752
40
Steinborn M, Wörtler K, Nathrath M et al.
Whole-body MRI in children with langerhans cell histiocytosis for the evaluation of
the skeletal system.
Röntgenstr Fortschr.
2008;
180
646-653
41
Asbach P, Canda V, Hermann K G et al.
Efficient whole-body MRI interpretation: evaluation of a dedicated software prototype.
J Digit Imaging.
2008;
21
S50-S58
42
Müller-Horvat C, Plathow C, Ludescher B et al.
Generating statements at whole-body imaging with a workflow-optimized software tool
– first experiences with multireader analysis.
Röntgenstr Fortschr.
2007;
179
721-727
Dr. Alexander Huppertz
Imaging Science Institute Charité
Robert-Koch-Platz 7
10115 Berlin
Germany
Telefon: ++ 49/30/24 08 33 83
Fax: ++ 49/30/24 08 33 82
eMail: Alexander.Huppertz@charite.de