Ultraschall Med 2011; 32(3): 286-292
DOI: 10.1055/s-0029-1245992
Originalarbeit/Original

© Georg Thieme Verlag KG Stuttgart · New York

Der Beitrag der Bildanalyse für die Differenzialdiagnose der fokalen Nierenparenchymveränderungen

Image Analysis in the Differential Diagnosis of Renal Parenchyma LesionsJ. Tuma1 , B. Novakova2 , H. R. Schwarzenbach3 , K.-P. Jungius4 , A. Hollerweger5 , F. Zatura6 , M. Kuchta2 , C. F. Dietrich7
  • 1Innere Medizin, Sonografie-Institut, Uster, CH
  • 2LF UPJŠ v Košiciach, SK
  • 3Praxis Innere Medizin, Melide, CH
  • 4Röntgeninstitut, Schwyz, CH
  • 5Radiologie und Nuklearmedizin, KH Barmherzige Brüder, Salzburg, A
  • 6Urologicka Klinika, FN Olomouc, CZ
  • 7Med. Klinik 2, Caritas-Krankenhaus, Bad Mergentheim, D
Further Information

Publication History

eingereicht: 6.4.2010

angenommen: 15.12.2010

Publication Date:
10 June 2011 (online)

Zusammenfassung

Ziel: Die Quantifizierung der Echointensität könnte einen Beitrag für die Differenzialdiagnose von fokalen Nierenveränderungen leisten. Material und Methoden: Bei 145 Patienten mit fokalen Nierenparenchymveränderungen wurden digitalisierte Bilder ausgewertet (40 Angiomyolipome [A], 70 Nierenzellkarzinome [B], 20 Pseudotumoren [C] sowie 15 andere fokale Veränderungen [D]). Mit Photoshop® wurden die durchschnittlichen Grauwerte der Läsion (definiert als Echointensität, EF) und deren Varianz s2 (als Maß für Inhomogenität, IF) gemessen. Als Vergleich diente die umgebende Nierenrinde. Berechnet wurden Echointensitätsquotient, Echointensitätsindex, Inhomogenitätsquotient und Inhomogenitätsindex. Ergebnisse: Angiomyolipome hatten einen höheren Echointensitätsquotient EQ und Echointensitätsindex EI als Nierenzellkarzinome, Pseudotumoren sowie andere Läsionen (p < 0,001). Pseudotumoren hatten einen niedrigeren Inhomogenitätsquotienten IQ als Angiomyolipome (p < 0,001) und Nierenzellkarzinome (p < 0,05). Ein Echointensitätsquotient ≥ 2,0 und Echointensitätsindex ≥ 0,5 waren typisch für Angiomyolipome; bei Tumoren < 3 cm lag die Sensitivität bei 96,4 %, Spezifität bei 97,3 %. Schlussfolgerung: Die quantitative Echointensitätsmessung objektiviert die Differenzialdiagnose fokaler Nierenveränderungen. Die Unterscheidung typischer Angiomyolipome von anderen Läsionen wird dadurch erleichtert.

Abstract

Purpose: Visual analysis of echo intensity is of importance for the differential diagnosis of focal renal lesions. Quantification of the echo intensity and of other parameters might help with differential diagnosis. Materials and Methods: In 145 patients with focal renal lesions, digitized images were evaluated (40 angiomyolipomas [group A], 70 renal cell carcinomas [group B], 20 pseudo-tumors [group C] and 15 other focal lesions in group D). With Photoshop®, the average grayscale values of the lesion (defined as echo intensity focal, EF) and its variance s2 (as expression of the inhomogeneity focal, IF) were measured. These measurements were compared to the renal cortex (echo intensity renal cortex = ER, inhomogeneity renal renal cortex = IR). Other calculated parameters: Echo intensity quotient, echo intensity index, inhomogeneity quotient and inhomogeneity index. Results: Angiomyolipomas had a higher echo intensity quotient EQ and echo intensity index EI than renal cell carcinomas, pseudo-tumors and other lesions (p < 0.001). Pseudo-tumors had a lower inhomogeneity quotient than angiomyolipomas (p < 0.001), renal cell carcinomas (p < 0.05). Echo intensity quotient EQ ≥ 2.0 and echo intensity index EI ≥ 0.5 were typical for angiomyolipomas with a sensitivity of 96.4 % and a specificity of 97.3 % for tumors < 3 cm. Conclusion: Quantitative echo intensity measurements enhance the differential diagnosis of focal renal lesions. The differentiation of typical angiomyolipomas to other lesions could be improved.

Literatur

  • 1 Madsen K M, Tisher C C. Anatomy of Kidney. In Brenner B M, Rector F C, editors The Kidney.. Philadelphia: Saunders; 2004: 3-72
  • 2 Tuma J. Niere mit abnormer Form. In Tuma J, Trinkler F, editors Sonographische Differentialdiagnose: Krankheiten des Urogenitalsystems.. Köln: Deutscher Ärzte-Verlag; 2009: 69-75
  • 3 Tuma J, Dietrich C. Niere. In Dietrich C, editor Ultraschall-Kurs.. Köln: Deutscher Ärzte-Verlag; 2005: 219-248
  • 4 Lafortune M, Constantin A, Breton G et al. Sonography of the hypertrophied column of Bertin.  Am J Roentgenol. 1986;  146 53-56
  • 5 Claudon M, Cosgrove D, Albrecht T et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) – update 2008.  Ultraschall in Med. 2008;  29 28-44
  • 6 Fan L, Lianfang D, Jinfang X et al. Diagnostic efficacy of contrast-enhanced ultrasonography in solid renal parenchymal lesions with maximum diameters of 5 cm.  J Ultrasound Med. 2008;  27 875-885
  • 7 Nilsson A. Contrast-enhanced ultrasound of the kidneys.  Eur Radiol. 2004;  14 104-109
  • 8 Strunk H M. Renale Angiomyolipome.  Ultraschall in Med. 2002;  6 367-372
  • 9 Forman H P, Middleton W D, Melson G L et al. Hyperechoic renal cell carcinomas: increase in detection at US.  Radiology. 1993;  188 431-434
  • 10 Hajdu S I, Foote Jr F W. Angiomyolipoma of the kidney: report of 27 cases and review of the literature.  J Urol. 1969;  102 396-401
  • 11 Nelson C P, Sanda M G. Contemporary diagnosis and management of renal angiomyolipoma.  J Urol. 2002;  168 1315-1325
  • 12 DeLaney T F. Overview of soft tissue sarcoma. In Rose B D, editor UpToDate. 2010
  • 13 Benjaminov O, Gutman H, Nyabanda R et al. Myxoid liposarcoma: an unusual presentation.  Am J Roentgenol. 2007;  188 817-821
  • 14 Kim J K, Kim S H, Jang Y J et al. Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging.  Radiology. 2006;  239 174-180
  • 15 Simpfendorfer C, Herts B R, Motta-Ramirez G A et al. Angiomyolipoma with minimal fat on MDCT: can counts of negative-attenuation pixels aid diagnosis?.  Am J Roentgenol. 2009;  192 438-443
  • 16 Kim J Y, Kim J K, Kim N et al. CT histogram analysis: differentiation of angiomyolipoma without visible fat from renal cell carcinoma at CT imaging.  Radiology. 2008;  246 472-479
  • 17 Catalano O A, Samir A E, Sahani D V et al. Pixel distribution analysis: can it be used to distinguish clear cell carcinomas from angiomyolipomas with minimal fat?.  Radiology. 2008;  247 738-746
  • 18 Blickstein I, Goldchmit R, Strano S D et al. Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms.  J Ultrasound Med. 1995;  14 661-664
  • 19 Blickstein I, Goldchmit R, Strano S D et al. Quantitative comparison of two distinct echogenic structures appearing on the same image using gain-assisted densitometric evaluation of sonograms (GADES).  J Ultrasound Med. 1995;  14 509-513
  • 20 Blickstein I, Smith-Levitin M, Gurewitsch E et al. Computed sonography: requiem to echogenicity assessment?.  Gynecol Obstet Invest. 1997;  44 244-248
  • 21 Chen D R, Chang R F, Huang Y L. Computer-aided diagnosis applied to US of solid breast nodules by using neural networks.  Radiology. 1999;  213 407-412
  • 22 Manley J A, O’Neill W C. How echogenic is echogenic? Quantitative acoustics of the renal cortex.  Am J Kidney Dis. 2001;  37 706-711
  • 23 Sabetai M M, Tegos T J, Nicolaides A N et al. Reproducibility of computer-quantified carotid plaque echogenicity: can we overcome the subjectivity?.  Stroke. 2000;  31 2189-2196
  • 24 Smith-Levitin M, Blickstein I, Albrecht-Shach A A et al. Quantitative assessment of gray-level perception: observers’ accuracy is dependent on density differences.  Ultrasound Obstet Gynecol. 1997;  10 346-349
  • 25 Strauss S, Gavish E, Gottlieb P et al. Interobserver and intraobserver variability in the sonographic assessment of fatty liver.  Am J Roentgenol. 2007;  189 W320-W323
  • 26 Moghazi S, Jones E, Schroepple J et al. Correlation of renal histopathology with sonographic findings.  Kidney Int. 2005;  67 1515-1520
  • 27 Webb M, Yeshua H, Zelber-Sagi S et al. Diagnostic value of a computerized hepatorenal index for sonographic quantification of liver steatosis.  Am J Roentgenol. 2009;  192 909-914
  • 28 Sim J S, Seo C S, Kim S H et al. Differentiation of small hyperechoic renal cell carcinoma from angiomyolipoma: computer-aided tissue echo quantification.  J Ultrasound Med. 1999;  18 261-264
  • 29 Tuma J, Schwarzenbach H R, Novakova B et al. The quantitative measurement of the echogenicity of the renal parenchyma.  Praxis. 2008;  97 297-303
  • 30 International Standard ISO 5725-2: Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the determination of repeatability and reproducibility of a standardmeasurement method. I. nternational Organisation for Standardization; 1994: 1-13.
  • 31 Smith Jr T, Lange G D, Marks W B. Fractal methods and results in cellular morphology – dimensions, lacunarity and multifractals.  J Neurosci Methods. 1996;  69 123-136
  • 32 Hricak H, Cruz C, Romanski R et al. Renal parenchymal disease: sonographic-histologic correlation.  Radiology. 1982;  144 141-147
  • 33 Rosenfield A T, Siegel N J. Renal parenchymal disease: histopathologic-sonographic correlation.  Am J Roentgenol. 1981;  137 793-798
  • 34 Tsau Y K, Lee P I, Chang L Y et al. Correlation of quantitative renal cortical echogenicity with renal function in pediatric renal diseases.  Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1997;  38 276-281
  • 35 Blickstein I. Quantitative assessment of sonographic image echogenicity by transmission densitometry: fetal liver model.  J Ultrasound Med. 1993;  12 567-571
  • 36 Eggert P, Debus F, Kreller-Laugwitz G et al. Densitometric measurement of renal echogenicity in infants and naked eye evaluation: a comparison.  Pediatr Radiol. 1991;  21 111-113
  • 37 Grawitz P. Demonstration eines grossen Angio-Myo-Lipoms der Niere.  Dtsch Med Wochenschr. 1900;  26 290

Prof. Christoph F. Dietrich

Innere Medizin 2, Caritas-Krankenhaus

Uhlandstr. 7

97980 Bad Mergentheim

Phone: ++ 49/79 31/58 22 01

Fax: ++ 49/79 31/58 22 90

Email: Christoph.Dietrich@ckbm.de

    >