Zusammenfassung
Die Erwärmung und Befeuchtung der eingeatmeten Luft ist neben der Reinigung und Riechfunktion
die zentrale Aufgabe der Nasenwege. Die optimale Konditionierung der Atemluft in der
Nase soll einen unbeeinträchtigten alveolären Gasaustausch ermöglichen. Aufgrund der
komplexen dreidimensionalen Struktur der Nasenhöhle und der schlechten Zugänglichkeit
insbesondere tieferer Nasenabschnitte, sind in vivo Messungen des intranasalen Temperatur-
und Wärmeaustausches anhand verschiedener Versuchsanordnungen der gesamten Nase technisch
nicht realisierbar. Das Hauptproblem von intranasalen in vivo Messungen ist die eingeschränkte
räumliche und zeitliche Auflösung. Es können nur Daten an einzelnen Stellen in der
Nase erhoben werden. Eine exakte Untersuchung und Kartierung der Lufttemperatur, -feuchte
und Mukosatemperatur innerhalb der gesamten Nase ist in vivo technisch nicht realisierbar,
da unendlich viele Messungen während des Atemzyklus erforderlich wären und dies nur
bis zu einem gewissen Grad durchführbar ist. Diese Schwierigkeiten mit in vivo Messungen
haben in den letzten Jahren zu einer großen Zahl an numerischen Simulationsprojekten
geführt, die ergänzend Informationen zur äußerst komplexen Funktion der Nasenwege
liefern können. Generell können numerische Simulationen nur eingeschränkt und abhängig
von den eingestellten Randbedingungen des Computermodells, z. B. realistisches Nasenmodell,
Vorhersagen berechnen. Es handelt sich also immer um numerische Näherungen. Ziel dieses
Referates ist die Zusammenschau der messtechnischen Erkenntnisse der nasalen Klimatisierung
in vivo, der Informationen aus den numerischen Simulationen und speziell der Wissensstand
bezüglich des Einflusses von chirurgischen Eingriffen an der Nase und den Nasennebenhöhlen
auf die Klimatisierungsfunktion der Nase.
Abstract
Simulation and Air-conditioning in the Nose
Heating and humidification of the respiratory air are the main functions of the nasal
airways in addition to cleansing and olfaction. Optimal nasal air conditioning is
mandatory for an ideal pulmonary gas exchange in order to avoid dessication and adhesion
of the alveolar capillary bed. The complex three-dimensional anatomical structure
of the nose makes it impossible to perform detailed in vivo studies on intranasal
heating and humidification within the entire nasal airways applying various technical
set-ups. The main problem of in vivo temperature and humidity measurements is a poor
spatial and time resolution. Therefore, in vivo measurements are feasible to a restricted
extent, only providing single temperature values as the complete nose is not entirely
accessible. Therefore, data on the overall performance of the nose are only based
on one single measurement within each nasal segment. In vivo measurements within the
entire nose are not feasible. These serious technical issues concerning in vivo measurements
led to a large number of numerical simulation projects in the last few years providing
novel information about the complex functions of the nasal airways. In general, numerical
simulations only calculate predictions in a computational model, e. g. realistic nose
model, depending on the setting of the boundary conditions. Therefore, numerical simulations
achieve only approximations of a possible real situation. The aim of this report is
the synopsis of the technical expertise on the field of in vivo nasal air conditioning,
the novel information of numerical simulations and the current state of knowledge
on the influence of nasal and sinus surgery on nasal air conditioning.
Schlüsselwörter
Klimatisierung - Strömung - numerische Simulation - CFD - Nase
Key words
climatisation - air flow - numerical simulation - CFD - nose
Literatur
1 Calderón MA, Devalia JL, Davies RJ. Biology of nasal epithelium.. In: Mygind N,
Lildholdt T (eds) Nasal polyposis. An inflammatory disease and its treatment. Munksgaard,
Kopenhagen; 1997: 31-43
2
Gwaltney JM, Jones JG, Kennedy DW.
Medical management of sinusitis: educational goals and management guidelines. The
International Conference on Sinus Disease.
Ann Otol Rhinol Laryngol.
1995;
((Suppl))
16722-16730
3
Ingelstedt S.
Studies on the conditioning of air in the respiratory tract.
Acta Otolaryngol.
1956;
((Suppl 131))
1-80
4
Heyder J, Armbruster L, Gebhart J, Grein E, Stahlhofen W.
Total deposition of aerosol particles in the human respiratory tract for nose and
mouth breathing.
J Aerosol Sci.
1975;
6
311-328
5
Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W.
Deposition of particles in the human respiratory tract in the size range 0.005–15 μm.
J Aerosol Sci.
1986;
17
811-825
6
Deitmer T.
Moderne Funktionsdiagnostik der Nase und der Nasennebenhöhlen.
Eur Arch Otorhinolaryngol.
1996;
((Suppl I))
1-71
7
Keck T, Leiacker R, Schick M, Rettinger G, Kühnemann S.
Temperatur- und Feuchteprofil der Nase vor und nach Schleimhautabschwellung durch
Xylometazolin.
Laryngorhinootologie.
2000;
79
749-752
8
Stuart BO.
Deposition and clearance of inhaled particles.
Environ Health Persp.
1984;
55
369-390
9
Cole P.
Recordings of respiratory air temperature.
J Laryngol Otol.
1954;
68
295-307
10
Cole P.
Respiratory mucosal vascular responses, air conditioning and thermoregulation.
J Laryngol Otol.
1954;
68
613-622
11
Ingelstedt S.
Studies on the conditioning of air in the respiratory tract.
Acta Otolaryngol.
1956;
((Suppl 131))
1-80
12
Ingelstedt S, Ivstam B.
Study on the humidifying capacity of the nose.
Acta Otolaryngol.
1951;
49
286-290
13
Rouadi P, Baroody FM, Abbott D, Naureckas E, Solway J, Nacleiro RM.
A technique to measure the ability of the human nose to warm and humidify air.
J Appl Physiol.
1999;
87
400-406
14
Cheng YS, Hansen GK, Su YF, Yeh HC, Morgan KT.
Deposition of ultrafine aerosols in rat nasal molds.
Toxicol Appl Pharmacol.
1990;
106
222-233
15
Cheng YS, Yeh HC, Swift DL.
Aerosol deposition in human nasal airway for particles 1 nm to 20 μm: a model study.
Radiat Prot Dosimetry.
1991;
38
41-47
16
Mollier R.
Das ix-Diagramm für Dampfluftgemische.
Z Ver Dt Ing.
1929;
73
1009-1013
17 Weber D. Das Mollier-Diagramm.. In: Weber D , Hrsg. Technische Feuchtemessung.
Vulkan Verlag, Essen; 1995: 26-37
18
Kern EB.
Surgical approaches to abnormalities of the nasal valve.
Rhinology.
1978;
16
165-189
19
Bruintjes TD, van Olphen AF, Hillen B, Huizing EH.
A functional anatomic study of the relationship of the nasal cartilages and muscles
to the nasal valve area.
Laryngoscope.
1998;
108
1025-1032
20
Shaida AM, Kenyon GS.
The nasal valves: changes in anatomy and physiology in normal subjects.
Rhinology.
2000;
38
7-12
21
Widdicombe J.
Microvascular anatomy of the nose.
Allergy.
1997;
52
((Suppl 40))
7-11
22 Lang J. Nasal cavity.. In: Lang J (ed) Clinical anatomy of the nose, nasal cavity
and paranasal sinuses. Thieme Medical Publishers, New York; 1989: 31-55
23 Swift DL, Proctor DF. Access of air to the respiratory tract.. In: Brain JD, Proctor DF,
Reid LM (eds) Respiratory defence mechanisms. Marcel Dekker, Inc, New York; 1977:
63-93
24 Mygind N, Pedersen M, Nielsen MH. Morphology of the upper airway epithelium.. In:
Proctor DF, Andersen IB (eds) The nose. Upper airway physiology and the atmospheric
environment. Elsevier Biomedical Press, Amsterdam New York Oxford; 1982: 71-97
25 Kaliner MA, Shelhamer JH, Borson DB, Patow CA, Marom Z, Nadel JA. Respiratory mucus..
In: Kaliner MA, Barnes PJ (eds) The airways. Neural control in health and disease.
Marcel Dekker, Inc., New York, Basel; 1988: 575-593
26 Proctor DF. The mucociliary system.. In: Proctor DF, Andersen IB (eds) The nose.
Upper airway physiology and the atmospheric environment. Elsevier Biomedical Press,
Amsterdam New York Oxford; 1982: 245-278
27
Basbaum CB.
Regulation of airway secretory cells.
Clin Chest Med.
1986;
7
231-237
28 Cole P. Modification of inspired air.. In: Proctor DF, Andersen IB (eds) The nose.
Upper airway physiology and the atmospheric environment. Elsevier Biomedical Press,
Amsterdam New York Oxford; 1982: 351-375
29
Cauna N, Cauna D, Hinderer KH.
Innervation of human nasal glands.
J Neurocytol.
1972;
1
49-60
30 Cauna N. Blood and nerve supply of the nasal lining.. In: Proctor DF, Andersen IB
(eds) The nose. Upper airway physiology and the atmospheric environment. Elsevier
Biomedical Press BV, Amsterdam New York Oxford; 1982: 45-69
31
Dahlström A, Fuxe K.
The adrenergic innervation of the nasal mucosa of certain mammals.
Acta Otolaryngol.
1965;
59
65-72
32
Olsson P, Bende M, Ohlin P.
The Laser Doppler Flowmeter for measuring microcirculation in human nasal mucosa.
Acta Otolaryngol.
1985;
99
133-139
33
Lund VJ.
Nasal physiology: Neurochemical receptors, nasal cycle, and ciliary action.
Allergy Asthma Proc.
1996;
17
179-184
34
Cole P.
Respiratory mucosal vascular responses, air conditioning and thermoregulation.
J Laryngol Otol.
1954;
68
613-622
35
Walker JEC, Wells RE, Merrill EW.
Heat and water exchange in the respiratory tract.
Am J Med.
1961;
30
259-267
36
Willatt DJ.
Continuous infrared thermometry of the nasal mucosa.
Rhinology.
1993;
31
63-67
37
Cole P.
Nasal and oral airflow resistors. Site, function, and assessment.
Arch Otolaryngol Head Neck Surg.
1992;
118
790-793
38
Mlynski G.
Strömung und Konditionierung der Atemluft.
Laryngorhinootologie.
2000;
79
636-638
39
Elad D, Liebenthal R, Wenig BL, Einav S.
Analysis of air flow patterns in the human nose.
Med Biol Eng Comput.
1993;
31
585-592
40
Kelly JT, Prasad AK, Wexler AS.
Detailed flow patterns in the nasal cavity.
J Appl Physiol.
2000;
89
323-337
41
Webb P.
Air temperatures in respiratory tracts of resting subjects in cold.
J Appl Physiol.
1951;
4
378-382
42
Keck T, Leiacker, Heinrich A, Kühnemann S, Rettinger G.
Humidity and temperature profile in the nasal cavity.
Rhinology.
2000;
38
167-171
43
Keck T, Leiacker R, Riechelmann H, Rettinger G.
Temperature profile in the nasal cavity.
Laryngoscope.
2000;
110
651-654
44
Cole P.
Further observations on the conditioning of respiratory air.
J Laryngol Otol.
1953;
67
669-681
45
McFadden Jr ER, Pichurko BM, Bowman HF, Ingenito E, Burns S, Dowling N, Solway J.
Thermal mapping of the airways in humans.
J Appl Physiol.
1985;
58
564-570
46
Lindemann J, Wiesmiller K, Kastl KG.
Dynamic nasal infrared thermography in patients with nasal septal perforations.
Am J Rhinol.
2009;
23
471-474
47
Kastl KG, Wiesmiller KM, Lindemann J.
Dynamic infrared thermography of the nasal vestibules: a new method.
Rhinology.
2008;
47
89-92
48
Liese W, Joshi R, Cumming G.
Humidification of respired gas by nasal mucosa.
Ann Otol.
1973;
82
330-332
49
Drettner B, Falck B, Simon H.
Measurements of the air conditioning capacity of the nose during normal and pathological
conditions and pharmacological influence.
Acta Otolaryngol.
1977;
84
266-277
50
Drettner B, Kumlien J.
Experimental studies of the human nasal air conditioning capacity.
Acta Otolaryngol.
1981;
91
605-609
51
Perwitzschky R.
Die Temperatur- und Feuchtigkeitsverhältnisse der Atemluft in den Luftwegen. I. Mitteilung.
Arch f Hals-, Nasen- u Ohrenheilk.
1928;
117
1-36
52
Perwitzschky R.
Die Temperatur- und Feuchtigkeitsverhältnisse der Atemluft in den Luftwegen. II. Mitteilung.
Arch f Hals-, Nasen- u Ohrenheilk.
1930;
125
1-22
53
Seeley LE.
Study of changes in the temperature and water vapor content of respired air in the
nasal cavity.
Heating Piping and Air Conditioning.
1940;
12
377-388
54
Primiano FP, Montague FW, Saidel GM.
Measurement system for respiratory water vapor and temperature dynamics.
J Appl Physiol Respirat Environ Exercise Physiol.
1984;
56
1679-1685
55
Primiano FP, Saidel GM, Montague FW, Kruse KL, Green CG, Horowitz JG.
Water vapour and temperature dynamics in the upper airways of normal and CF subjects.
Eur Respir J.
1988;
1
407-414
56
Dick W.
Aspects of humidification: requirements and techniques.
Int Anesthesiol Clin.
1974;
12
217-239
57
Kohler P, Rimek A, Albrecht M, Frankenberger H, Mertins W, van Ackern K.
Sind Feuchtigkeitsfilter in der Inspirationsluft während Narkosebeatmung notwendig?
Neue In-vivo-Methode zur Feuchtigkeitsmessung im Atemgas.
Anästhesiol Intensivmed Notfallmed Schmerzther.
1992;
27
149-155
58
Wissing H, Kuhn I, Kessler P.
Das Wärme-Feuchte-Profil des PhysioFlex.
Untersuchungen am Modell. Anaesthesist.
1997;
46
201-206
59
Kaufman JW, Farahmand K.
In vivo measurements of human oral cavity heat and water vapor transport.
Respiratory Physiology and Neurobiology.
2006;
150
260-277
60
Akerlund A, Bende M.
Nasal mucosal temperature and the effect of acute infective rhinitis.
Clin Otolaryngol.
1989;
14
529-534
61
Hair GE, Fischer ND, Preslar MJ.
Humidification of air by nasal mucosa. A method of study.
Laryngoscope.
1969;
79
375-381
62
Nowak E.
Moisture measurement with capacitive polymer humidity sensors.
Sensors.
1996;
13
86-91
63
Ohhashi T, Sakaguchi M, Tsuda T.
Human perspiration measurement.
Physiol Meas.
1998;
19
449-461
64
Wilson AC, Barnes TH, Seakins PJ, Rolfe TG, Meyer EJ.
A low-cost, high-speed, near-infrared hygrometer.
Rev Sci Instrum.
1995;
66
5618-5624
65
Kumlien J..
Persönliche Mitteilung
2000;
66
Ophir D, Elad Y, Fishler E, Fink A, Marshak G.
Effects of elevated intranasal temperature on subjective and objective findings in
perennial rhinitis.
Ann Otol Rhinol Laryngol.
1988;
97
259-263
67
Assanasen P, Baroody FM, Naureckas E, Naclerio RM.
Warming of feet elevates nasal mucosal surface temperature and reduces the early response
to nasal challenge with allergen.
J Allergy Clin Immunol.
1999;
104
285-293
68 Cole P. Air conditioning.. In: Cole P (ed) The respiratory role of the upper airways.
Mosby Year Book, St. Louis; 1992: 102-106
69
Keck T, Leiacker R, Meixner D, Kühnemann S, Rettinger G.
Erwärmung der Atemluft in der Nase.
HNO.
2001;
49
36-40
70 Heywang F, Nücke E, Timm J, Timm W. Wärmelehre.. In: Heywang F, Nücke E, Timm J,
Timm W , Hrsg. Physik für Techniker. Verlag Handwerk und Technik, Hamburg; 1996:
155-203
71
Mercke U.
The influence of temperature on mucociliary activity: temperature range 40–50°C.
Acta Otolaryngol.
1974;
78
253-258
72
Mercke U, Hakansson CH, Toremalm NG.
The influence of temperature on mucociliary activity: temperature range 20–40°C.
Acta Otolaryngol.
1974;
78
444-450
73 Swift DL, Proctor DF. Access of air to the respiratory tract.. In: Brain JD, Proctor DF,
Reid LM (eds) Respiratory defence mechanisms. Marcel Dekker, Inc, New York; 1977:
63-93
74
Keck T, Leiacker R, Lindemann J, Rettinger G, Kühnemann S.
Endonasales Temperatur- und Feuchteprofil nach Exposition zu verschieden klimatisierter
Einatemluft.
HNO.
2001;
49
372-377
75
Olsson P, Bende M.
Influence of environmental temperature on human nasal mucosa.
Ann Otol Rhinol Laryngol.
1985;
94
153-155
76
Fontanari P, Burnet H, Zattara-Hartmann MC, Jammes Y.
Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist
air in normal individuals.
J Appl Physiol.
1996;
81
1739-1743
77
Jankowski R, Philip G, Togias A, Naclerio R.
Demonstration of bilateral cholinergic secretory response after unilateral nasal cold,
dry air challenge.
Rhinology.
1993;
31
97-100
78
Philip G, Jankowski R, Baroody FM, Naclerio RM, Togias AG.
Reflex activation of nasal secretion by unilateral inhalation of cold dry air.
Am Rev Respir Dis.
1993;
148
1616-1622
79
Rozsasi A, Leiacker R, Keck T.
Nasal conditioning in perennial allergic rhinitis after nasal allergen challenge.
Clin Exp Allergy.
2004;
34
1099-1104
80
Fabricant ND.
The topical temperature of clinically normal nasal and pharyngeal mucous membranes.
Arch Otolaryngol.
1957;
66
275-277
81
Jun Y, Qingping Z.
Twenty-three cases of atrophic rhinitis treated by deep puncture at three points in
the nasal region.
J Trad Chin Med.
1999;
19
115-117
82
Lindemann J, Leiacker R, Rettinger G, Keck T.
Nasal mucosal temperature during respiration.
Clin Otolaryngol.
2002;
27
135-139
83
Lindemann J, Leiacker R, Rettinger G, Keck T.
The effect of topical xylometazoline on the mucosal temperature of the nasal septum.
Am J Rhinol.
2002;
16
229-234
84
Lindemann J, Leiacker R, Wiesmiller K, Rettinger G, Keck T.
Immediate effect of benzalkonium-chloride in decongestant nasal spray on the human
nasal mucosal temperature.
Clin Otolaryngol.
2004;
29
357-361
85
Molony N, Blackwell C, Busuttil A.
The effect of prone posture on nasal temperature in children in relation to induction
of staphylococcal toxins implicated in sudden infant death syndrome.
FEMS Immunol Med Microbiol.
1999;
25
103-108
86
Willatt DJ.
Continuous infrared thermometry of the nasal mucosa.
Rhinology.
1993;
31
63-67
87
Lindemann J, Sannwald D, Wiesmiller K.
Age-related changes in intranasal air conditioning in the elderly.
Laryngoscope.
2008;
118
1472-1475
88
Grutzenmacher S, Lang C, Saadi R, Mlynski G.
First findings about the nasal airflow in noses with septal perforation.
Laryngorhinootologie.
2002;
81
276-279
89
Hahn I, Scherer PW, Mozell MM.
Velocity profiles measured for airflow through a large-scale model of the human nasal
cavity.
J Appl Physiol.
1993;
75
2273-2287
90
Hess MM, Lamprecht J, Horlitz S.
Experimentelle Untersuchungen in der Nasenhaupthöhle des Menschen im Nasenmodell.
Laryngo Rhino Otol.
1992;
71
467
91
Hornung DE, Leopold DA, Youngentob SL, Sheehe PR, Gagne GM, Thomas FD, Mozell M.
Airflow pattern in a human nasal model.
Arch Otolaryngol Head Neck Surg.
1987;
113
169-172
92
Levine SC, Levine H, Jacobs G, Kasick J.
A technique to model the nasal airway for aerodynamic study.
Arch Otolaryngol Head Neck Surg.
1986;
4
442-449
93
Masing H.
Experimentelle Untersuchungen über die Strömung im Nasenmodell.
Arch Klin Exp Ohren Nasen Kehlkopfheilkd.
1967;
189
59-70
94 Mink JP. Physiologie der oberen Luftwege. Leipzig: Verlag FCW Vogel; 1920
95
Mlynski G, Grutzenmacher S, Plontke S, Mlynski B, Lang C.
Correlation of nasal morphology and respiratory function.
Rhinology.
2001;
39
197-201
96
Proctor DF.
Airborne disease and the upper respiratory tract.
Bacteriol Rev.
1966;
30
498-513
97 Proctor DF, Swift DL. Temperature and water vapor adjustment. In: Respiratory Defense
Mechanisms, Part I. Dekker M Inc, New York; 1977: 95-124
98
Proetz AW.
Air currents in the upper respiratory tract and their clinical importance.
Ann Otol Rhinol Laryngol.
1951;
60
439-467
99
Scherer PW, Hahn II, Mozell MM.
The biophysics of nasal airflow.
Otolaryngol Clin North Am.
1989;
22
265-278
100
Simmen D, Scherrer JL, Moe K, Heinz B.
A dynamic and direct visualization model for the study of nasal airflow.
Arch Otolaryngol Head Neck Surg.
1999;
125
1015-1021
101
Tonndorf J.
Der Weg der Atemluft durch die menschliche Nase.
Arch Ohr-, Nase-, Kehlk Heilk.
1939;
146
41
102
Uddstromer M.
Nasal respiration.
Acta Oto Laryngologica.
1940;
((Suppl 42))
103
Ozlugedik S, Nakiboglu G, Sert C, Elhan A, Tonuk E, Akyar S, Tekdemir I.
Numerical study of the aerodynamic effects of septoplasty and partial lateral turbinectomy.
Laryngoscope.
2008;
118
330-334
104
Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T.
Flow mechanisms in the human olfactory groove: numerical simulation of nasal physiological
respiration during inspiration, expiration, and sniffing.
Arch Otolaryngol Head Neck Surg.
2009;
135
156-162
105
Wen J, Inthavong K, Tu J, Wang S.
Numerical simulations for detailed airflow dynamics in a human nasal cavity.
Resp Physiol Neurobiol.
2008;
161
125-135
106
Zhao K, Pribitkin EA, Cowart BJ, Rosen D, Scherer PW, Dalton P.
Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome
to airflow and olfaction.
Am J Rhinol.
2006;
20
308-316
107
Wexler D, Segal R, Kimbell J.
Aerodynamic effects of inferior turbinate reduction: computational fluid dynamics
simulation.
Arch Otolaryngol Head Neck Surg.
2005;
131
((12))
1102-1107
108
Xiong GX, Zhan JM, Jiang HY, Li JF, Rong LW, Xu G.
Computational fluid dynamics simulation of airflow in the normal nasal cavity and
paranasal sinuses.
Am J Rhinol.
2008;
22
477-482
109
Xiong G, Zhan J, Zuo K, Li J, Rong L, Xu G.
Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity.
Med Biol Eng Comput.
2008;
46
1161-1167
110
Garcia GJ, Bailie N, Martins DA, Kimbell JS.
Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity.
J Appl Physiol.
2007;
103
1082-1092
111
Lindemann J, Keck T, Wiesmiller K, Sander B, Brambs HJ, Rettinger G, Pless D.
A numerical simulation of intranasal air temperature during inspiration.
Laryngoscope.
2004;
114
1037-1041
112
Pless D, Keck T, Wiesmiller K, Rettinger G, Aschoff AJ, Fleiter TR, Lindemann J.
Numerical simulation of air temperature and airflow patterns in the human nose during
expiration.
Clin Otolaryngol.
2004;
29
642-647
113
Lindemann J, Keck T, Wiesmiller KM, Sander B, Brambs HJ, Rettinger G, Pless D.
Nasal air temperature and airflow during respiration in numerical simulation based
on multislice computed tomography scan.
Am J Rhinol Rhinol.
2006;
20
219-223
114
Lindemann J, Brambs HJ, Keck T, Wiesmiller KM, Rettinger G, Pless D.
Numerical simulation of intranasal air flow after radical sinus surgery.
Am J Otolaryngol.
2005;
26
175-180
115
Lindemann J, Keck T, Wiesmiller KM, Rettinger G, Brambs HJ, Pless D.
Numerical simulation of intranasal air flow and temperature after resection of the
turbinates.
Rhinology.
2005;
43
24-28
116
Pless D, Keck T, Wiesmiller KM, Lamche R, Aschoff AJ, Lindemann J.
Numerical simulation of airflow patterns and air temperature distribution during inspiration
in a nose model with septal perforation.
Am J Rhinol.
2004;
18
357-362
117
Bockholt U, Mlynski G, Muller W, Voss G.
Rhinosurgical therapy planning via endonasal airflow simulation.
Comput Aided Surg.
2000;
5
175-179
118
Grant O, Bailie N, Watterson J, Cole J, Gallagher G, Hanna B.
Numerical model of a nasal septal perforation.
Medinfo.
2004;
11
1352-1356
119
Keyhani K, Scherer PW, Mozell MM.
Numerical simulation of airflow in the human nasal cavity.
J Biomech Eng.
1995;
117
429-441
120
Muller-Wittig W, Mlynski G, Weinhold I, Bockholt U, Voss G.
Nasal airflow diagnosis – comparison of experimental studies and computer simulations.
Stud Health Technol Inform.
2002;
85
311-317
121
Tarabichi M, Fanous N.
Finite element analysis of airflow in the nasal valve.
Arch Otolaryngol Head Neck Surg.
1993;
119
638-642
122
Weinhold I, Mlynski G.
Numerical simulation of airflow in the human nose.
Eur Arch Otorhinolaryngol.
2004;
261
452-455
123
Zhao K, Scherer PW, Hajiloo SA, Dalton P.
Effect of anatomy on human nasal air flow and odorant transport patterns: implications
for olfaction.
Chem Senses.
2004;
29
365-379
124
Martonen TB, Quan L, Zhang Z, Musante CJ.
Flow simulation in the human upper respiratory tract.
Cell Biochem Biophys.
2002;
37
27-36
125
Martonen TB, Zhang Z, Yu G, Musante CJ.
Three-dimensional computer modeling of the human upper respiratory tract.
Cell Biochem Biophys.
2001;
35
255-261
126
Balashazy I, Farkas A, Szoke I, Hofmann W, Sturm R.
Simulation of deposition and clearance of inhaled particles in central human airways.
Radiat Prot Dosimetry.
2003;
105
129-132
127
Calay RK, Kurujareon J, Holdo AE.
Numerical simulation of respiratory flow patterns within human lung.
Respir Physiolo Neurobiol.
2002;
130
201-221
128
Hegedus CJ, Balashazy I, Farkas A.
Detailed mathematical description of the geometry of airway bifurcations.
Respir Physiol Neurobiol.
2004;
141
99-114
129
Nowak N, Kakade PP, Annapragada AV.
Computational fluid dynamics simulation of airflow and aerosol deposition in human
lungs.
Ann Biomed Eng.
2003;
31
374-390
130
Moe R.
The effect on the respiratory functions of the nose of the lumen-dilating nasal operations.
Acta Otolaryngol.
1942;
((Suppl 45))
5-146
131
Lindemann J, Keck T, Leiacker R, Dzida R, Wiesmiller K.
Early influence of bilateral turbinoplasty combined with septoplasty on intranasal
air conditioning.
Am J Rhinol.
2008;
22
542-545
132
Arunachalam PS, Kitcher E, Gray J, Wilson JA.
Nasal septal surgery: evaluation of symptomatic and general health outcomes.
Clin Otolaryngol Allied Sci.
2001;
26
367-370
133
Stewart MG, Smith TL, Weaver EM.
Outcomes after nasal septoplasty: results from the Nasal Obstruction Septoplasty Effectiveness
(NOSE) study.
Otolaryngol Head Neck Surg.
2004;
130
283-290
134
Wiesmiller K, Keck T, Rettinger G, Leiacker R, Dzida R, Lindemann J.
Nasal air conditioning in patients before and after septoplasty with bilateral turbinoplasty.
Laryngoscope.
2006;
116
890-894
135
Rozsasi A, Leiacker R, Kühnemann S, Lindemann J, Kappe T, Rettinger G, Keck T.
The impact of septorhinoplasty and anterior turbinoplasty on nasal conditioning.
Am J Rhinol.
2007;
21
302-306
136
Lindemann J, Kuhnemann S, Stehmer V, Leiacker R, Rettinger G, Keck T.
Temperature and humidity profile of the anterior nasal airways of patients with nasal
septal perforation.
Rhinology.
2001;
39
202-206
137
Lindemann J, Leiacker R, Stehmer V, Rettinger G, Keck T.
Intranasal temperature and humidity profile in patients with nasal septal perforation
before and after surgical closure.
Clin Otolaryngol Allied Sci.
2001;
26
433-437
138
Stammberger H, Posawetz W.
Functional endoscopic sinus surgery. Concept, indications and results of the Messerklinger
technique.
Eur Arch Otorhinolaryngol.
1990;
247
63-76
139
Kennedy DW, Senior BA.
Endoscopic sinus surgery: A review.
Prim Care.
1998;
25
703-720
140
Keck T, Leiacker R, Kuhnemann S, Rettinger G.
Heating of air in the nasal airways in patients with chronic sinus disease before
and after sinus surgery.
Clin Otolaryngol Allied Sci.
2001;
26
53-58
141
Papp J, Leiacker R, Keck T, Rozsasi A, Kappe T.
Nasal air-conditioning in patients with chronic rhinosinusitis and nasal polyposis.
Arch Otolaryngol Head Neck Surg.
2008;
134
931-935
142
Kappe T, Papp J, Rozsasi A, Leiacker R, Rettinger G, Keck T.
Nasal conditioning after endonasal surgery in chronic rhinosinusitis with nasal polyps.
Am J Rhinol.
2008;
22
89-94
143
Lindemann J, Leiacker R, Sikora T, Rettinger G, Keck T.
Impact of unilateral sinus surgery with resection of the turbinates by means of midfacial
degloving on nasal air conditioning.
Laryngoscope.
2002;
112
2062-2066
Korrespondenzadresse
Prof. Dr. med. Tilman Keck
Krankenhaus der Elisabethinen
GmbH
Akademisches Lehrkrankenhaus
der Medizinischen Universität
Graz
Elisabethinergasse 14
8020 Graz
Österreich
Email: kecktill@aol.com
Prof. Dr. med. Jörg Lindemann
Oberarzt der Universitäts-
HNO-Klinik Ulm
Frauensteige 12
89075 Ulm
Email: joerg.lindemann@uniklinik-ulm.de