ABSTRACT
Recently, an East–West consensus on the histopathologic criteria for the diagnosis
of high-grade dysplastic nodules (HGDN) versus early hepatocellular carcinoma (HCC)
was reached. Next to classical morphologic criteria such as nucleocytoplasmic ratio,
thickness of cell plates, mitotic index, and architectural disturbance like acinar
structures, one of the most relevant criteria to diagnose early HCC is stromal invasion.
Because a structured basement membrane is lacking along the hepatocytes in the liver,
invasion cannot be defined as tumor growth through the basement membrane as in other
tissues. However, the number of portal tracts that are present in a nodule gradually
decrease because the tumoral hepatocytes start to show a destructive invading growth
pattern in the mesenchyma/stroma of these portal tracts. This feature of stromal invasion
is however sometimes difficult to recognize in needle biopsies because included portal
tracts can be absent. Therefore, other diagnostic criteria are necessary. Based on
molecular profiling, several additional markers for early malignant HCC have been
found recently. Glypican-3, heat shock protein 70, and glutamine synthetase have been
already validated and can be used as a panel of stains to confirm the pathologist's
histopathologic diagnosis and to solve difficult cases.
KEYWORDS
Hepatocellular carcinoma - stromal invasion - dysplastic nodule - glypican-3 - heat
shock protein 70 - glutamine synthetase - nodule-in-nodule
REFERENCES
- 1
Bruix J, Sherman M. Practice Guidelines Committee, American Association for the Study
of Liver Diseases .
Management of hepatocellular carcinoma.
Hepatology.
2005;
42(5)
1208-1236
- 2
Bruix J, Sherman M.
Diagnosis of small HCC.
Gastroenterology.
2005;
129(4)
1364
- 3
Kojiro M, Roskams T.
Early hepatocellular carcinoma and dysplastic nodules.
Semin Liver Dis.
2005;
25(2)
133-142
- 4
Party I W. International Working Party .
Terminology of nodular hepatocellular lesions.
Hepatology.
1995;
22(3)
983-993
- 5
International Consensus Group for Hepatocellular Neoplasia .
Pathologic diagnosis of early hepatocellular carcinoma: a report of the International
Consensus Group for Hepatocellular Neoplasia.
Hepatology.
2009;
49(2)
658-664
- 6
Mion F, Grozel L, Boillot O, Paliard P, Berger F.
Adult cirrhotic liver explants: precancerous lesions and undetected small hepatocellular
carcinomas.
Gastroenterology.
1996;
111(6)
1587-1592
- 7
Terada T, Terasaki S, Nakanuma Y.
A clinicopathologic study of adenomatous hyperplasia of the liver in 209 consecutive
cirrhotic livers examined by autopsy.
Cancer.
1993;
72(5)
1551-1556
- 8
Hytiroglou P, Theise N D, Schwartz M, Mor E, Miller C, Thung S N.
Macroregenerative nodules in a series of adult cirrhotic liver explants: issues of
classification and nomenclature.
Hepatology.
1995;
21(3)
703-708
- 9
Libbrecht L, Bielen D, Verslype C et al..
Focal lesions in cirrhotic explant livers: pathological evaluation and accuracy of
pretransplantation imaging examinations.
Liver Transpl.
2002;
8(9)
749-761
- 10
Libbrecht L, Desmet V, Roskams T.
Preneoplastic lesions in human hepatocarcinogenesis.
Liver Int.
2005;
25(1)
16-27
- 11
Arakawa M, Kage M, Sugihara S, Nakashima T, Suenaga M, Okuda K.
Emergence of malignant lesions within an adenomatous hyperplastic nodule in a cirrhotic
liver. Observations in five cases.
Gastroenterology.
1986;
91(1)
198-208
- 12
Anthony P P, Vogel C L, Barker L F.
Liver cell dysplasia: a premalignant condition.
J Clin Pathol.
1973;
26(3)
217-223
- 13
Hytiroglou P.
Morphological changes of early human hepatocarcinogenesis.
Semin Liver Dis.
2004;
24(1)
65-75
- 14
Terada T, Nakanuma Y.
Survey of iron-accumulative macroregenerative nodules in cirrhotic livers.
Hepatology.
1989;
10(5)
851-854
- 15
Kojiro M.
Premalignant lesions of hepatocellular carcinoma: pathologic viewpoint.
J Hepatobiliary Pancreat Surg.
2000;
7(6)
535-541
- 16
Terada T, Nakanuma Y.
Arterial elements and perisinusoidal cells in borderline hepatocellular nodules and
small hepatocellular carcinomas.
Histopathology.
1995;
27(4)
333-339
- 17
Park Y N, Yang C P, Fernandez G J, Cubukcu O, Thung S N, Theise N D.
Neoangiogenesis and sinusoidal “capillarization” in dysplastic nodules of the liver.
Am J Surg Pathol.
1998;
22(6)
656-662
- 18
Roncalli M, Roz E, Coggi G et al..
The vascular profile of regenerative and dysplastic nodules of the cirrhotic liver:
implications for diagnosis and classification.
Hepatology.
1999;
30(5)
1174-1178
- 19
Maggioni M, Coggi G, Cassani B et al..
Molecular changes in hepatocellular dysplastic nodules on microdissected liver biopsies.
Hepatology.
2000;
32(5)
942-946
- 20
Sun M, Eshleman J R, Ferrell L D et al..
An early lesion in hepatic carcinogenesis: loss of heterozygosity in human cirrhotic
livers and dysplastic nodules at the 1p36-p34 region.
Hepatology.
2001;
33(6)
1415-1424
- 21
Tornillo L, Carafa V, Sauter G et al..
Chromosomal alterations in hepatocellular nodules by comparative genomic hybridization:
high-grade dysplastic nodules represent early stages of hepatocellular carcinoma.
Lab Invest.
2002;
82(5)
547-553
- 22
Plentz R, Park Y N, Lechel A et al..
Telomere shortening and inactivation of cell cycle checkpoints characterize human
hepatocarcinogenesis.
Hepatology.
2007;
45
968-976
- 23
Borzio M, Fargion S, Borzio F et al..
Impact of large regenerative, low grade and high grade dysplastic nodules in hepatocellular
carcinoma development.
J Hepatol.
2003;
39(2)
208-214
- 24 Kojiro M. Pathology of Hepatocellular Carcinoma. Boston, MA; Blackwell Publishing
2006
- 25
Matsui O, Takashima T, Kadoya M et al..
Dynamic computed tomography during arterial portography: the most sensitive examination
for small hepatocellular carcinomas.
J Comput Assist Tomogr.
1985;
9(1)
19-24
- 26
Kudo M, Tomita S, Tochio H et al..
Small hepatocellular carcinoma: diagnosis with US angiography with intraarterial CO2
microbubbles.
Radiology.
1992;
182(1)
155-160
- 27
Bennett G L, Krinsky G A, Abitbol R J, Kim S Y, Theise N D, Teperman L W.
Sonographic detection of hepatocellular carcinoma and dysplastic nodules in cirrhosis:
correlation of pretransplantation sonography and liver explant pathology in 200 patients.
AJR Am J Roentgenol.
2002;
179(1)
75-80
- 28
Krinsky G A, Lee V S, Theise N D et al..
Hepatocellular carcinoma and dysplastic nodules in patients with cirrhosis: prospective
diagnosis with MR imaging and explantation correlation.
Radiology.
2001;
219(2)
445-454
- 29
van den Bos I C, Hussain S M, Terkivatan T, Zondervan P E, de Man R A.
Stepwise carcinogenesis of hepatocellular carcinoma in the cirrhotic liver: demonstration
on serial MR imaging.
J Magn Reson Imaging.
2006;
24(5)
1071-1080
- 30
Nakashima O, Sugihara S, Kage M, Kojiro M.
Pathomorphologic characteristics of small hepatocellular carcinoma: a special reference
to small hepatocellular carcinoma with indistinct margins.
Hepatology.
1995;
22(1)
101-105
- 31
Nakano M, Saito A, Yamamoto M, Doi M, Takasaki K.
Stromal and blood vessel wall invasion in well-differentiated hepatocellular carcinoma.
Liver.
1997;
17(1)
41-46
- 32
International Consensus Group for Hepatocellular NeoplasiaThe International Consensus
Group for Hepatocellular Neoplasia .
Pathologic diagnosis of early hepatocellular carcinoma: a report of the international
consensus group for hepatocellular neoplasia.
Hepatology.
2009;
49(2)
658-664
- 33
Dhillon A P, Colombari R, Savage K, Scheuer P J.
An immunohistochemical study of the blood vessels within primary hepatocellular tumours.
Liver.
1992;
12(5)
311-318
- 34
Nakashima Y, Nakashima O, Hsia C C, Kojiro M, Tabor E.
Vascularization of small hepatocellular carcinomas: correlation with differentiation.
Liver.
1999;
19(1)
12-18
- 35
Kimura H, Nakajima T, Kagawa K et al..
Angiogenesis in hepatocellular carcinoma as evaluated by CD34 immunohistochemistry.
Liver.
1998;
18(1)
14-19
- 36
Maeda T, Adachi E, Kajiyama K et al..
CD34 expression in endothelial cells of small hepatocellular carcinoma: its correlation
with tumour progression and angiographic findings.
J Gastroenterol Hepatol.
1995;
10(6)
650-654
- 37
Enzan H, Himeno H, Iwamura S et al..
Alpha-smooth muscle actin-positive perisinusoidal stromal cells in human hepatocellular
carcinoma.
Hepatology.
1994;
19(4)
895-903
- 38
Libbrecht L, Severi T, Cassiman D et al..
Glypican-3 expression distinguishes small hepatocellular carcinomas from cirrhosis,
dysplastic nodules, and focal nodular hyperplasia-like nodules.
Am J Surg Pathol.
2006;
30(11)
1405-1411
- 39
Wang X Y, Degos F, Dubois S et al..
Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic
lesions and hepatocellular carcinomas.
Hum Pathol.
2006;
37(11)
1435-1441
- 40
Capurro M, Wanless I R, Sherman M et al..
Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma.
Gastroenterology.
2003;
125(1)
89-97
- 41
Midorikawa Y, Ishikawa S, Iwanari H et al..
Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling.
Int J Cancer.
2003;
103(4)
455-465
- 42
Nakatsura T, Yoshitake Y, Senju S et al..
Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel
tumor marker.
Biochem Biophys Res Commun.
2003;
306(1)
16-25
- 43
Sung Y K, Hwang S Y, Park M K et al..
Glypican-3 is overexpressed in human hepatocellular carcinoma.
Cancer Sci.
2003;
94(3)
259-262
- 44
Moriguchi H, Sato C.
The values and limitations of glypican-3 as a novel tumor marker for hepatocellular
carcinoma from clinical and economic viewpoints.
Gastroenterology.
2004;
127(2)
679-680
- 45
Kandil D, Leiman G, Allegretta M et al..
Glypican-3 immunocytochemistry in liver fine-needle aspirates: a novel stain to assist
in the differentiation of benign and malignant liver lesions.
Cancer.
2007;
111(5)
316-322
- 46
Garrido C, Gurbuxani S, Ravagnan L, Kroemer G.
Heat shock proteins: endogenous modulators of apoptotic cell death.
Biochem Biophys Res Commun.
2001;
286(3)
433-442
- 47
Helmbrecht K, Zeise E, Rensing L.
Chaperones in cell cycle regulation and mitogenic signal transduction: a review.
Cell Prolif.
2000;
33(6)
341-365
- 48
Chuma M, Sakamoto M, Yamazaki K et al..
Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as
a molecular marker of early hepatocellular carcinoma.
Hepatology.
2003;
37(1)
198-207
- 49
Di Tommaso L, Franchi G, Park Y N et al..
Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular
nodules in cirrhosis.
Hepatology.
2007;
45(3)
725-734
- 50
Moorman A FM, De Boer P A, Das A T, Labruyère W T, Charles R, Lamers W H.
Expression patterns of mRNAs for ammonia-metabolizing enzymes in the developing rat:
the ontogenesis of hepatocyte heterogeneity.
Histochem J.
1990;
22(9)
457-468
- 51
Moorman A F, Vermeulen J L, Charles R, Lamers W H.
Localization of ammonia-metabolizing enzymes in human liver: ontogenesis of heterogeneity.
Hepatology.
1989;
9(3)
367-372
- 52
Christa L, Simon M T, Flinois J P, Gebhardt R, Brechot C, Lasserre C.
Overexpression of glutamine synthetase in human primary liver cancer.
Gastroenterology.
1994;
106(5)
1312-1320
- 53
Zucman-Rossi J, Benhamouche S, Godard C et al..
Differential effects of inactivated Axin1 and activated beta-catenin mutations in
human hepatocellular carcinomas.
Oncogene.
2007;
26(5)
774-780
- 54
Osada T, Sakamoto M, Nagawa H et al..
Acquisition of glutamine synthetase expression in human hepatocarcinogenesis: relation
to disease recurrence and possible regulation by ubiquitin-dependent proteolysis.
Cancer.
1999;
85(4)
819-831
Tania RoskamsM.D. Ph.D.
Department of Morphology and Molecular Pathology
University of Leuven, Minderbroedersstraat 12, B-3000 Leuven, Belgium
Email: tania.roskams@uz.kuleuven.ac.be