Planta Med 2011; 77(1): 27-31
DOI: 10.1055/s-0030-1250076
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

MAPKs Are Not Involved in Triptolide-Induced Cell Growth Inhibition and Apoptosis in Prostate Cancer Cell Lines with Different p53 Status

Wei Li1 , 2 , Yong Liu1 , Xue-Xia Li3 , Yang Yu1 , Jing-Jing Wu1 , Qing Wang4 , Hong Huo1 , Li-Ming Wang5 , Ling Yang1
  • 1Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
  • 2Graduate University of the Chinese Academy of Sciences, Beijing, China
  • 3Department of Oncology, Affiliated Zhongshan Hospital of Dalian University
  • 4Dalian University of Technology, Dalian, China
  • 5The Second Affiliated Hospital of Dalian Medical University, Dalian, China
Further Information

Publication History

received March 19, 2010 revised May 31, 2010

accepted June 3, 2010

Publication Date:
06 July 2010 (online)

Abstract

Triptolide showed excellent antitumor activity against several solid tumors. However, its mechanism has not been fully understood. To further elucidate it, the effects of mitogen activated protein kinases (MAPKs) on the activity of triptolide towards prostate cancer cell lines were investigated in the present study using both LNCaP (p53 positive and androgen-dependent) and PC-3 (p53 deficient and androgen-independent) cells. Our results showed that triptolide exerted potent growth inhibitory and apoptotic effects on both cell lines, and the effects were independent of the expression of p53. Although upregulation of ERK and JNK phosphorylation was observed after the triptolide treatment, the results with inhibitors showed that these MAPKs were not involved in the mechanism of triptolide activity in human prostate cancer cell lines with different p53 status.

References

  • 1 Kiviharju T M, Lecane P S, Sellers R G, Peehl D M. Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells.  Clin Cancer Res. 2002;  8 2666-2674
  • 2 Zhang R, Zhang P Y, Guo J, Yang D, Wang W J, Zheng M H, Ma Y C. Effects of triptolide on prostate carcinoma in mouse RM-1 cells.  Zhonghua Nan Ke Xue. 2007;  13 237-241
  • 3 Fidler J M, Li K, Chung C, Wei K, Ross J A, Gao M, Rosen G D. PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy.  Mol Cancer Ther. 2003;  2 855-862
  • 4 Wang J, Waxman J. Chemotherapy for prostate cancer.  Urol Oncol. 2000;  5 93-96
  • 5 Heidenberg H B, Bauer J J, McLeod D G, Moul J W, Srivastava S. The role of the p 53 tumor suppressor gene in prostate cancer: a possible biomarker?.  Urology. 1996;  48 971-979
  • 6 Igney F H, Krammer P H. Death and anti-death: tumour resistance to apoptosis.  Nat Rev Cancer. 2002;  2 277-288
  • 7 Dong J T. Prevalent mutations in prostate cancer.  J Cell Biochem. 2006;  97 433-447
  • 8 Navone N M, Troncoso P, Pisters L L, Goodrow T L, Palmer J L, Nichols W W, von Eschenbach A C, Conti C J. p 53 Protein accumulation and gene mutation in the progression of human prostate carcinoma.  J Natl Cancer Inst. 1993;  85 1657-1669
  • 9 Jane E P, Premkumar D R, Pollack I F. AG490 influences UCN-01-induced cytotoxicity in glioma cells in a p 53-dependent fashion, correlating with effects on BAX cleavage and BAD phosphorylation.  Cancer Lett. 2007;  257 36-46
  • 10 Jiang X H, Wong B C Y, Lin M C M, Zhu G H, Kung H F, Jiang S H, Yang D, Lam S K. Functional p 53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kappa B activation in gastric cancer cells.  Oncogene. 2001;  20 8009-8018
  • 11 Wan C K, Wang C, Cheung H Y, Yang M, Fong W F. Triptolide induces Bcl-2 cleavage and mitochondria dependent apoptosis in p 53-deficient HL-60 cells.  Cancer Lett. 2006;  241 31-41
  • 12 Yang S, Chen J, Guo Z, Xu X M, Wang L, Pei X F, Yang J, Underhill C B, Zhang L. Triptolide inhibits the growth and metastasis of solid tumors.  Mol Cancer Ther. 2003;  2 65-72
  • 13 Watson J L, Greenshields A, Hill R, Hilchie A, Lee P W, Giacomantonio C A, Hoskin D W. Curcumin-induced apoptosis in ovarian carcinoma cells is p 53-independent and involves p 38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling.  Mol Carcinog. 2010;  49 13-24
  • 14 McCubrey J A, Steelman L S, Chappell W H, Abrams S L, Wong E W, Chang F, Lehmann B, Terrian D M, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli A M, Franklin R A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.  Biochim Biophys Acta. 2007;  1773 1263-1284
  • 15 Arnoldussen Y J, Saatcioglu F. Dual specificity phosphatases in prostate cancer.  Mol Cell Endocrinol. 2009;  309 1-7
  • 16 Bragado P, Armesilla A, Silva A, Porras A. Apoptosis by cisplatin requires p 53 mediated p 38alpha MAPK activation through ROS generation.  Apoptosis. 2007;  12 1733-1742
  • 17 Wu G S. The functional interactions between the p 53 and MAPK signaling pathways.  Cancer Biol Ther. 2004;  3 156-161
  • 18 Vivar O I, Lin C L, Firestone G L, Bjeldanes L F. 3,3′-Diindolylmethane induces a G(1) arrest in human prostate cancer cells irrespective of androgen receptor and p 53 status.  Biochem Pharmacol. 2009;  78 469-476
  • 19 Chang H C, Huang C C, Huang C J, Cheng J S, Liu S I, Tsai J Y, Chang H T, Huang J K, Chou C T, Jan C R. Desipramine-induced apoptosis in human PC3 prostate cancer cells: activation of JNK kinase and caspase-3 pathways and a protective role of [Ca2+]i elevation.  Toxicology. 2008;  250 9-14
  • 20 Liu Q, Chen T, Chen H, Zhang M, Li N, Lu Z, Ma P, Cao X. Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p 38 MAP kinase phosphorylation and caspase 3 activation.  Biochem Biophys Res Commun. 2004;  319 980-986
  • 21 Keepers Y P, Pizao P E, Peters G J, van Ark-Otte J, Winograd B, Pinedo H M. Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing.  Eur J Cancer. 1991;  27 897-900
  • 22 Xie X, Eberding A, Madera C, Fazli L, Jia W, Goldenberg L, Gleave M, Guns E S. Rh2 synergistically enhances paclitaxel or mitoxantrone in prostate cancer models.  J Urol. 2006;  175 1926-1931
  • 23 Hsiao C J, Li T K, Chan Y L, Hsin L W, Liao C H, Lee C H, Lyu P C, Guh J H. WRC-213, an l-methionine-conjugated mitoxantrone derivative, displays anticancer activity with reduced cardiotoxicity and drug resistance: identification of topoisomerase II inhibition and apoptotic machinery in prostate cancers.  Biochem Pharmacol. 2008;  75 847-856
  • 24 Carroll A G, Voeller H J, Sugars L, Gelmann E P. p 53 Oncogene mutations in three human prostate cancer cell lines.  Prostate. 1993;  23 123-134
  • 25 Girinsky T, Koumenis C, Graeber T G, Peehl D M, Giaccia A J. Attenuated response of p 53 and p 21 in primary cultures of human prostatic epithelial cells exposed to DNA-damaging agents.  Cancer Res. 1995;  55 3726-3731
  • 26 Chang W T, Kang J J, Lee K Y, Wei K, Anderson E, Gotmare S, Ross J A, Rosen G D. Triptolide and chemotherapy cooperate in tumor cell apoptosis. A role for the p 53 pathway.  J Biol Chem. 2001;  276 2221-2227
  • 27 Papatsoris A G, Karamouzis M V, Papavassiliou A G. The power and promise of “rewiring” the mitogen-activated protein kinase network in prostate cancer therapeutics.  Mol Cancer Ther. 2007;  6 811-819
  • 28 Wagner E F, Nebreda A R. Signal integration by JNK and p 38 MAPK pathways in cancer development.  Nat Rev Cancer. 2009;  9 537-549
  • 29 Joo S S, Yoo Y M. Melatonin induces apoptotic death in LNCaP cells via p 38 and JNK pathways: therapeutic implications for prostate cancer.  J Pineal Res. 2009;  47 8-14
  • 30 Zhang Y X, Kong C Z, Wang H Q, Wang L H, Xu C L, Sun Y H. Phosphorylation of Bcl-2 and activation of caspase-3 via the c-Jun N-terminal kinase pathway in ursolic acid-induced DU145 cells apoptosis.  Biochimie. 2009;  91 1173-1179
  • 31 Fu M, Wang C, Wang J, Zhang X, Sakamaki T, Yeung Y G, Chang C, Hopp T, Fuqua S A W, Jaffray E, Hay R T, Palvimo J J, Jänne O A, Pestell R G. Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function.  Mol Cell Biol. 2002;  22 3373-3388
  • 32 Abreu-Martin M T, Chari A, Palladino A A, Craft N A, Sawyers C L. Mitogen-activated protein kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer.  Mol Cell Biol. 1999;  19 5143-5154

Prof. Ling Yang

Laboratory of Pharmaceutical Resource Discovery
Dalian Institute of Chemical Physics, Chinese Academy of Sciences

457 Zhongshan Road

116023 Dalian

China

Phone: +86 4 11 84 37 93 17

Fax: +86 4 11 84 67 69 61

Email: yling@dicp.ac.cn

Prof. Li-Ming Wang

Department of General Surgery
The Second Affiliated Hospital of Dalian Medical University

467 Zhongshan Road

Dalian 116027

China

Phone: +86 4 11 84 66 97 20

Fax: +86 4 11 84 66 62 57

Email: wangbcc259@yahoo.com.cn

    >