Planta Med 2011; 77(2): 158-163
DOI: 10.1055/s-0030-1250146
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Cajanol Inhibits the Growth of Escherichia coli and Staphylococcus aureus by Acting on Membrane and DNA Damage

Xiao-lei Liu1 , 2 [*] , Xin-jian Zhang3 [*] , Yu-jie Fu1 , 2 , Yuan-gang Zu1 , 2 , Nan Wu1 , 2 , Lu Liang1 , 2 , Thomas Efferth4
  • 1Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P.R. China
  • 2Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, P.R. China
  • 3Department of Pharmacy, The First Clinical College of Harbin Medical University, Harbin, P.R. China
  • 4Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
Further Information

Publication History

received May 3, 2010 revised June 22, 2010

accepted June 24, 2010

Publication Date:
27 August 2010 (online)

Abstract

In the present study, the mechanism of antibacterial activity of cajanol extracted from the roots of Cajanus cajan (L.) Millsp. towards Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated. The antibacterial activity of cajanol was evaluated towards six bacterial strains (Staphylococcus epidermidis, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Proteus vulgaris, and Pseudomonas aeruginosa) by the broth microdilution method. It showed strong antibacterial activity towards all bacteria tested with minimal inhibition concentration (MIC) values ranging from 98.90 µM to 197.8 µM. Cajanol-induced death rates in the most sensitive strains (E.coli, 96.55 % and S. aureus, 97.25 %) were analyzed by flow cytometry. Furthermore, the activity of cajanol on the membranes of E. coli and S. aureus was investigated by using lecithin, phosphate groups, and fluorescence microscopy. Cajanol-induced DNA damage was observed by agarose gel electrophoresis. In summary, cajanol inhibited E.coli only by DNA damage, whereas S. aureus was inhibited by affecting both, the lecithin and phosphate groups on the cellular membrane and DNA. The present study shows that cajanol possesses antibacterial activity in vitro towards both gram-negative and gram-positive bacteria and therefore may be a promising candidate as an antibacterial agent for the therapy of microbial infections.

References

  • 1 Grover J K, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential.  J Ethnopharmacol. 2002;  81 81-100
  • 2 Espósito A M, Díaz A G I, Tello R, Gupta M P. Evaluation of traditional medicine: effects of Cajanus cajan L. and of Cassia fistula L. on carbohydrate metabolism in mice.  Rev Med Panama. 1991;  16 39-45
  • 3 Liang M T, Yang C H, Li S T, Yang C S, Chang H W, Liu C S, Cham T M, Chuang L Y. Antibacterial and antioxidant properties of Ramulus Cinnamomi using supercritical CO2 extraction.  Eur Food Res Technol. 2008;  227 1387-1396
  • 4 Eshun G D, Jaroszewski J W, Asomaning W A, Boachie F O, Christensen S B. Antiplasmodial constituents of Cajanus cajan.  Phytother Res. 2004;  18 128-130
  • 5 Cushnie T P T, Lamb A J. Antimicrobial activity of flavonoids.  Int J Antimicrob Agents. 2005;  26 343-356
  • 6 Liu H, Orjala J, Sticher O, Rali T. Acylated flavonol glycosides from leaves of Stenochlaena palustris.  J Nat Prod. 1999;  62 70-75
  • 7 Dahiya J S, Strange R N, Bilyard K G, Cooksey C J, Garratt P J. Two isoprenylated isoflavone phytoalexins from Cajanus cajan.  Phytochemistry. 1984;  23 871-873
  • 8 Demirci F, Guven K, Demirci B, Dadandi M Y. Antibacterial activity of two Phlomis essential oils against food pathogens.  Food Control. 2008;  19 1159-1164
  • 9 Du W L, Niu S S, Xua Y L, Xu Z R, Fan C L. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions.  Carbohydr Polym. 2009;  75 385-389
  • 10 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.  J Immunol Methods. 1983;  65 55-63
  • 11 Paparella A, Taccogna L, Aguzzi I, Chaves-López C, Serio A, Marsilio F, Suzzi G. Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes.  Food Control. 2008;  19 1174-1182
  • 12 Wiczling P, Krzyzanski W. Flow cytometric assessment of homeostatic aging of reticulocytes in rats.  Exp Hematol. 2008;  36 119-127
  • 13 Xing K, Chen X G, Liu C S, Cha D S, Park H J. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets.  Int J Food Microbiol. 2009;  132 127-133
  • 14 Qi A Q, Qian K X, Shao J Z, Yan Q F. A fluorometry method to determine cell viability by double staining with fluorescein diacetate and propidium iodide.  J Cell Biol. 2000;  22 50-53
  • 15 Kulkarni A, Patil S A, Badami P S. Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La(III), Th(IV) and VO(IV) complexes with Schiff bases of coumarin derivatives.  Eur J Med Chem. 2009;  44 2904-2912
  • 16 Laurin P, Ferroud D, Klich M, Dupuis-Hamelin C, Mauvais P, Lassaigne P, Bonnefoy A, Musicki B. Synthesis and in vitro evaluation of novel highly potent coumarin inhibitors of gyrase B.  Bioorg Med Chem Lett. 1999;  9 2079-2084
  • 17 Sohn H Y, Son K H, Kwon C S, Kwon G S, Kang S S. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai.  Phytomedicine. 2004;  11 666-672
  • 18 Hong H, Landauer M R, Foriska M A, Ledney G D. Antibacterial activity of the soy isoflavone genistein.  J Basic Microbiol. 2006;  46 329-335
  • 19 Schop H, Wiese M, Cordes H P, Seydel J K. Partial resistance of E. coli mutants against 2,4-diamino-5-benzylpyrimidines by interactions with bacterial membrane lipopolysaccharides. Derivation of quantitative structure-binding relationships.  Eur J Med Chem. 2000;  35 619-634
  • 20 Chen L B, Liang W Y, Qu J H, Xie M S, Lei P J, Liu H J. The viability determination of cyanobacteria by double staining with fluorescein diacetate and propidium iodide.  Environ Chem. 2005;  24 554-557
  • 21 Tian F, Li B, Ji B P, Yang J H, Zhang G Z, Chen Y, Luo Y C. Antioxidant and antimicrobial activities of consecutive extracts from Galla chinensis: the polarity affects the bioactivities.  Food Chem. 2009;  113 173-179
  • 22 Hiramatsu K. Molecular evolution of MRSA [J].  Microbiol Immunol. 1995;  39 531-543

1 The first two authors contributed equally to this work.

Yu-Jie Fu, Ph.D.

Key Laboratory of Forest Plant Ecology
Ministry of Education
Northeast Forestry University

Hexinglu 26

150040 Harbin

P.R. China

Phone: +86 4 51 82 19 05 35

Fax: +86 4 51 82 10 20 82

Email: yujie_fu2002@yahoo.com

    >