Planta Med 2011; 77(9): 958-963
DOI: 10.1055/s-0030-1250684
Analytical Studies
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Correlation between Chromatographic Fingerprint and Antioxidant Activity of Turnera diffusa (Damiana)

Aurora Garza-Juárez1 , Ma. de la Luz Salazar-Cavazos1 , Ricardo Salazar-Aranda1 , Jonathan Pérez-Meseguer1 , Noemi Waksman de Torres1
  • 1Departamento de Química Analítica, Facultad de Medicina, U. A. N. L., Nuevo León, México
Further Information

Publication History

received July 2, 2010 revised Nov. 29, 2010

accepted Dec. 9, 2010

Publication Date:
21 January 2011 (online)


In the present contribution, the partial least squares (PLS) method was used to establish a correlation between the antioxidant activity (obtained by DPPH assay) and chromatographic profiles of Turnera diffusa extracts. Chromatograms were obtained using HPLC‐DAD. A model was constructed using 40 samples with 2550 X variables corresponding to the responses obtained at different times; the Y variables consisted of experimental values of antioxidant activity of each extract (measured as EC50). Prior to this analysis, alignment of chromatograms was performed based on consideration of seven high-intensity signals present in all samples. The PLS1 model was validated by cross-validations; its capacity was evaluated using correlation parameters R2, root mean square error of calibration (RMSEC), and root mean square error of prediction (RMSEP). The best results were achieved with zero order chromatograms using five-point smoothing (R2 = 0.96, RMSEC = 3.31, and RMSEP = 7.86). Under these conditions, the optimal number of components was five. The model was applied to the prediction of antioxidant activity of commercial products; no significant differences were found between the experimental and predicted antioxidant activities for 83 % of them.


  • 1 Chang Y, Ding X, Qi J, Kang L, Zhu D, Zhang B, Yu B. The antioxidant-activity-integrated fingerprint: an advantageous tool for the evaluation of quality of herbal medicines.  J Chromatogr A. 2008;  1208 76-82
  • 2 Adame J, Adame H. Plantas crativas del Noreste Mexicano, 1st edition. Mexico; Editorial Castillo 2000: 123
  • 3 Alcaraz L, Delgado J, Real S. Analysis of essential oils from wild and micropropagated plants of damiana (Turnera diffusa).  Fitoterapia. 2004;  75 696-701
  • 4 Farmacopea herbolaria de los estados unidos Mexicanos. Mexico; Mexican Health Secretary 2001: 91
  • 5 Leung A, Foster S. Encyclopedia of common natural ingredients used in food, drugs and cosmetics. New York; John Wiley 1996: 204
  • 6 Salazar R, Pozos M E, Cordero P, Pérez J, Salinas M C, Waksman N. Determination of the antioxidant activity of plants from Northeast Mexico.  Pharm Biol. 2008;  46 166-170
  • 7 Piacente S, Camargo E, Zampelli A, Gracioso J, Souza A, Pizza C, Vilegas W. Flavonoids and arbutin from Turnera diffusa.  Z Naturforsch C. 2002;  57 983-985
  • 8 Zhao J, Pawar R, Ali Z, Khan I. Phytochemical investigation of Turnera diffusa.  J Nat Prod. 2007;  70 289-292
  • 9 Kumar S, Sharma A. Apigenin: the anxiolytic constituent of Turnera aphrodisiaca.  Pharm Biol. 2006;  44 84-90
  • 10 Zhao J, Dasmahapatra A, Khan S, Khan I. Anti-aromatase activity of the constituents from damiana (Turnera diffusa).  J Ethnopharmacol. 2008;  120 387-393
  • 11 Ramirez R, Ceniceros L, Salazar R, Salazar M L, Waksman N. Evaluation of thin-layer chromatography methods for quality control of commercial products containing Aesculus hippocastanum, Turnera diffusa, Matricaria recutita, Passiflora incarnata, and Tilia occidentalis.  J AOAC Int. 2007;  90 920-924
  • 12 Pérez-Meseguer J, Garza A, Salazar M L, Salazar R, Rivas V, Waksman N. Development and validation of an HPLC-DAD analytical procedure for quality control of damiana (Turnera diffusa), using an antioxidant marker isolated from the plant.  J AOAC Int. 2010;  93 1161-1168
  • 13 Liang Y, Xie P, Chan K. Quality control of herbal medicines.  J Chromatogr B. 2004;  812 53-70
  • 14 Yang L, Wu D, Tang X, Peng W, Wang X, Ma Y, Su W. Fingerprint quality control of Tianjihuang by high-performance liquid chromatography-photodiode array detection.  J Chromatogr A. 2005;  1070 35-42
  • 15 Ji Y, Xu Q, Hu Y, Vander Heyden Y. Development, optimization and validation of a fingerprint of Ginkgo biloba extracts by high-performance liquid chromatography.  J Chromatogr A. 2005;  1066 97-104
  • 16 Sun Y, Guo T, Sui Y, Li F. Fingerprint analysis of Flos Carthami by capillary electrophoresis.  J Chromatogr B. 2003;  792 147-152
  • 17 Wang L, Cao Y, Xing X, Ye J. Fingerprint studies of Radix Scutellariae by capillary electrophoresis and high performance liquid chromatography.  Chromatographia. 2005;  62 283-288
  • 18 Zhang X, Cui Z, Wang D, Zhou H Y. High performance liquid chromatographic fingerprint evaluation of the quinolizidine alkaloids from commercial Radix Sophorae flavescentis.  J Asian Nat Prod Res. 2003;  5 171-182
  • 19 WHO .General guidelines for methodologies on research and evaluation of traditional medicines. Geneva; WHO 2000
  • 20 Zhang J, Ke Y. Fingerprint analysis of Flos Carthami and safflower yellow pigments by high-performance liquid chromatography.  Anal Lett. 2005;  38 981-995
  • 21 Gong F, Liang Y, Xie P. Information theory applied to chromatographic fingerprint of herbal medicine for quality control.  J Chromatogr A. 2003;  1002 25-40
  • 22 Koll K, Reich E, Blatter A. Validation of standardized high-performance thin-layer chromatographic methods for quality control and stability testing of herbals.  J AOAC Int. 2003;  86 909-915
  • 23 Garza A, Waksman N, Ramírez R, Salazar M L. Development and validation of fingerprints of Turnera diffusa extracts obtained by use of high-performance liquid chromatography with diode array detection and chemometric methods.  Acta Chromatogr. 2009;  21 217-235
  • 24 Chen P, Ozcan M, Harnly J. Chromatographic fingerprints analysis for evaluation of Ginkgo biloba products.  Anal Bioanal Chem. 2007;  389 251-261
  • 25 Ni Y, Peng Y, Kokot S. Fingerprint analysis of Eucommia bark by LC-DAD and LC-MS with the aid of chemometrics.  Chromatographia. 2008;  67 211-217
  • 26 The Unscrambler User Manual CAMO software AS. Available at. Accessed June 5, 2006
  • 27 Dumarey M, Van Nederkassel A M, Deconinck E, Vander Heyden Y. Exploration of linear multivariable calibration techniques to predict the total antioxidant capacity of green tea from chromatographic fingerprint.  J Chromatogr A. 2008;  1192 81-88
  • 28 Van Nederkassel A M, Daszykowski M, Massart D L, Vander Heyden Y. Prediction of total green tea antioxidant capacity from chromatograms by multivariate modeling.  J Chromatogr A. 2005;  1096 177-186
  • 29 Zhang M H, Luypaert J, Fernández Pierna J A, Xu Q S, Massart D L. Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibration.  Talanta. 2004;  62 25-35
  • 30 Gong F, Wang B, Chau F. Data preprocessing for chromatographic fingerprint of herbal medicine with chemometric approaches.  Anal Lett. 2005;  38 2475-2492
  • 31 Gong F, Liang Y, Fung Y. Correction of retention time shifts for chromatographic fingerprints of herbal medicines.  J Chromatogr A. 2004;  1029 173-183
  • 32 García M, Ortíz C, Sarabia L, Aldama M. Validation of an analytical method to determinate sulfamides in kidney by HPLC-DAD and PARAFAC2 with first-order derivative chromatograms.  Anal Chim Acta. 2007;  587 222-234
  • 33 Quintas G, Lendi B, Pastor A, De la Guardia M. First-order derivative resolution of overlapped PAH peaks with common mass spectra in gas chromatography-mass spectrometry.  Talanta. 2008;  74 747-752
  • 34 Daszykowski M, Vander Heyden Y, Walczak B. Robust partial least squares model for prediction of green tea antioxidant capacity from chromatograms.  J Chromatogr A. 2007;  1176 12-18

Dr. Noemi Waksman de Torres

Department of Analytical Chemistry
Facultad de Medicina, U. A. N. L.
Madero y Aguirre Pequeño Col. Mitras Centro

Madero y Aguire Pequeño

C. P. 64460 Monterrey, N. L.


Phone: + 52 81 83 29 41 85

Fax: + 52 81 86 75 85 46