Semin Reprod Med 2010; 28(3): 260-273
DOI: 10.1055/s-0030-1251483
© Thieme Medical Publishers

Cell-Type Specific Actions of Progesterone Receptor Modulators in the Regulation of Uterine Leiomyoma Growth

Shigeki Yoshida1 , Noriyuki Ohara1 , Qin Xu1 , Wei Chen1 , Jiayin Wang1 , Koji Nakabayashi1 , Hiroko Sasaki1 , Akira Morikawa1 , Takeshi Maruo2
  • 1Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Japan
  • 2Kobe Children's Hospital and Feto-Maternal Medical Center, Kobe, Japan
Further Information

Publication History

Publication Date:
22 April 2010 (online)

ABSTRACT

Although the traditional concept supports a crucial role of estrogen in promoting leiomyoma growth, unequivocal evidence has emerged indicating that progesterone also plays a vital role in the regulation of leiomyoma growth. Recent clinical trials have demonstrated the efficacy of asoprisnil, a selective progesterone receptor modulator, and CDB-2914, a novel progesterone receptor modulator, for the treatment of women with symptomatic leiomyomata. These compounds significantly reduced leiomyoma and uterine volume and improved leiomyoma-related symptoms without serious complications. However, the precise mechanism whereby these compounds cause leiomyoma regression remains poorly understood. Our extensive in vitro studies have provided novel evidence for the growth inhibitory effects of asoprisnil and CDB-2914 on cultured leiomyoma cells. Both compounds exhibited antiproliferative, proapoptotic, and antifibrotic actions on cultured leiomyoma cells in the absence of comparable effects on cultured normal myometrial cells. Asoprisnil and/or CDB-2914 modulated the ratio of progesterone receptor isoforms (PR-A and PR-B) in cultured leiomyoma cells; decreased the cell viability; suppressed the expression of growth factors, angiogenic factors, and their receptors in those cells; and induced apoptosis through activating the mitochondrial and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathways and eliciting endoplasmic reticulum stress. Furthermore, these compounds suppressed types I and III collagen synthesis by modulating extracellular matrix-remodeling enzymes in cultured leiomyoma cells without affecting those syntheses in cultured normal myometrial cells. These findings indicate that both compounds exert antiproliferative, proapoptotic, and antifibrotic actions on leiomyoma cells in a cell-type specific manner. This supports the notion that asoprisnil and CDB-2914 hold promise for the nonsurgical treatment of uterine leiomyomata.

REFERENCES

  • 1 Rein M S, Barbieri R L, Friedman A J. Progesterone: a critical role in the pathogenesis of uterine myomas.  Am J Obstet Gynecol. 1995;  172(1 Pt 1) 14-18
  • 2 Matsuo H, Maruo T, Samoto T. Increased expression of Bcl-2 protein in human uterine leiomyoma and its up-regulation by progesterone.  J Clin Endocrinol Metab. 1997;  82(1) 293-299
  • 3 Shimomura Y, Matsuo H, Samoto T, Maruo T. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma.  J Clin Endocrinol Metab. 1998;  83(6) 2192-2198
  • 4 Kurachi O, Matsuo H, Samoto T, Maruo T. Tumor necrosis factor-alpha expression in human uterine leiomyoma and its down-regulation by progesterone.  J Clin Endocrinol Metab. 2001;  86(5) 2275-2280
  • 5 Maruo T, Ohara N, Wang J, Matsuo H. Sex steroidal regulation of uterine leiomyoma growth and apoptosis.  Hum Reprod Update. 2004;  10(3) 207-220
  • 6 Harrison-Woolrych M L, Charnock-Jones D S, Smith S K. Quantification of messenger ribonucleic acid for epidermal growth factor in human myometrium and leiomyomata using reverse transcriptase polymerase chain reaction.  J Clin Endocrinol Metab. 1994;  78(5) 1179-1184
  • 7 Maruo T, Samoto T, Matsuo H, Shimomura Y, Mochizuki M. Regulation of proliferative potential and Bcl-2 oncoprotein expression in human uterine leiomyoma by sex steroid hormones. In: Kuramoto H, Gurpide E In Vitro Biology of Sex Steroid Hormone Action. Tokyo, Japan; Churchill Livingstone 1996: 251-263
  • 8 Gao Z, Matsuo H, Wang Y, Nakago S, Maruo T. Up-regulation by IGF-I of proliferating cell nuclear antigen and Bcl-2 protein expression in human uterine leiomyoma cells.  J Clin Endocrinol Metab. 2001;  86(11) 5593-5599
  • 9 Yamada T, Nakago S, Kurachi O et al.. Progesterone down-regulates insulin-like growth factor-I expression in cultured human uterine leiomyoma cells.  Hum Reprod. 2004;  19 815-821
  • 10 Leonhardt S A, Edwards D P. Mechanism of action of progesterone antagonists.  Exp Biol Med (Maywood). 2002;  227 969-980
  • 11 Kastner P, Krust A, Turcotte B et al.. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B.  EMBO J. 1990;  9(5) 1603-1614
  • 12 Vegeto E, Shahbaz M M, Wen D X, Goldman M E, O'Malley B W, McDonnell D P. Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function.  Mol Endocrinol. 1993;  7(10) 1244-1255
  • 13 Wen D X, Xu Y-F, Mais D E, Goldman M E, McDonnell D P. The A and B isoforms of the human progesterone receptor operate through distinct signaling pathways within target cells.  Mol Cell Biol. 1994;  14(12) 8356-8364
  • 14 Brandon D D, Bethea C L, Strawn E Y et al.. Progesterone receptor messenger ribonucleic acid and protein are overexpressed in human uterine leiomyomas.  Am J Obstet Gynecol. 1993;  169(1) 78-85
  • 15 Viville B, Charnock-Jones D S, Sharkey A M, Wetzka B, Smith S K. Distribution of the A and B forms of the progesterone receptor messenger ribonucleic acid and protein in uterine leiomyomata and adjacent myometrium.  Hum Reprod. 1997;  12(4) 815-822
  • 16 Nisolle M, Gillerot S, Casanas-Roux F, Squifflet J, Berliere M, Donnez J. Immunohistochemical study of the proliferation index, oestrogen receptors and progesterone receptors A and B in leiomyomata and normal myometrium during the menstrual cycle and under gonadotrophin-releasing hormone agonist therapy.  Hum Reprod. 1999;  14(11) 2844-2850
  • 17 Tiltman A J. The effect of progestins on the mitotic activity of uterine fibromyomas.  Int J Gynecol Pathol. 1985;  4(2) 89-96
  • 18 Carr B R, Marshburn P B, Weatherall P T et al.. An evaluation of the effect of gonadotropin-releasing hormone analogs and medroxyprogesterone acetate on uterine leiomyomata volume by magnetic resonance imaging: a prospective, randomized, double blind, placebo-controlled, crossover trial.  J Clin Endocrinol Metab. 1993;  76(5) 1217-1223
  • 19 Friedman A J, Daly M, Juneau-Norcross M et al.. A prospective, randomized trial of gonadotropin-releasing hormone agonist plus estrogen-progestin or progestin “add-back” regimens for women with leiomyomata uteri.  J Clin Endocrinol Metab. 1993;  76(6) 1439-1445
  • 20 Kettel L M, Murphy A A, Morales A J, Yen S SC. Clinical efficacy of the antiprogesterone RU486 in the treatment of endometriosis and uterine fibroids.  Hum Reprod. 1994;  9(suppl 1) 116-120
  • 21 Murphy A A, Morales A J, Kettel L M, Yen S SC. Regression of uterine leiomyomata to the antiprogesterone RU486: dose-response effect.  Fertil Steril. 1995;  64(1) 187-190
  • 22 Eisinger S H, Meldrum S, Fiscella K, le Roux H D, Guzick D S. Low-dose mifepristone for uterine leiomyomata.  Obstet Gynecol. 2003;  101(2) 243-250
  • 23 Chwalisz K, Perez M C, Demanno D, Winkel C, Schubert G, Elger W. Selective progesterone receptor modulator development and use in the treatment of leiomyomata and endometriosis.  Endocr Rev. 2005;  26(3) 423-438
  • 24 Chwalisz K, Larsen L, Mattia-Goldberg C, Edmonds A, Elger W, Winkel C A. A randomized, controlled trial of asoprisnil, a novel selective progesterone receptor modulator, in women with uterine leiomyomata.  Fertil Steril. 2007;  87(6) 1399-1412
  • 25 Levens E D, Potlog-Nahari C, Armstrong A Y et al.. CDB-2914 for uterine leiomyomata treatment: a randomized controlled trial.  Obstet Gynecol. 2008;  111(5) 1129-1136
  • 26 Wilkens J, Chwalisz K, Han C et al.. Effects of the selective progesterone receptor modulator asoprisnil on uterine artery blood flow, ovarian activity, and clinical symptoms in patients with uterine leiomyomata scheduled for hysterectomy.  J Clin Endocrinol Metab. 2008;  93(12) 4664-4671
  • 27 Attardi B J, Burgenson J, Hild S A, Reel J R, Blye R P. CDB-4124 and its putative monodemethylated metabolite, CDB-4453, are potent antiprogestins with reduced antiglucocorticoid activity: in vitro comparison to mifepristone and CDB-2914.  Mol Cell Endocrinol. 2002;  188(1-2) 111-123
  • 28 Blithe D L, Nieman L K, Blye R P, Stratton P, Passaro M. Development of the selective progesterone receptor modulator CDB-2914 for clinical indications.  Steroids. 2003;  68(10–13) 1013-1017
  • 29 Gainer E E, Ulmann A. Pharmacologic properties of CDB(VA)-2914.  Steroids. 2003;  68(10–13) 1005-1011
  • 30 Hild S A, Reel J R, Hoffman L H, Blye R P. CDB-2914: anti-progestational/anti-glucocorticoid profile and post-coital anti-fertility activity in rats and rabbits.  Hum Reprod. 2000;  15(4) 822-829
  • 31 Horne F M, Blithe D L. Progesterone receptor modulators and the endometrium: changes and consequences.  Hum Reprod Update. 2007;  13(6) 567-580
  • 32 Ravet S, Munaut C, Blacher S et al.. Persistence of an intact endometrial matrix and vessels structure in women exposed to VA-2914, a selective progesterone receptor modulator.  J Clin Endocrinol Metab. 2008;  93(11) 4525-4531
  • 33 Wilkens J, Williams A RW, Chwalisz K, Han C, Cameron I T, Critchley H O. Effect of asoprisnil on uterine proliferation markers and endometrial expression of the tumour suppressor gene, PTEN.  Hum Reprod. 2009;  24 1036-1044
  • 34 Xu Q, Takekida S, Ohara N et al.. Progesterone receptor modulator CDB-2914 down-regulates proliferative cell nuclear antigen and Bcl-2 protein expression and up-regulates caspase-3 and poly(adenosine 5′-diphosphate-ribose) polymerase expression in cultured human uterine leiomyoma cells.  J Clin Endocrinol Metab. 2005;  90(2) 953-961
  • 35 Chen W, Ohara N, Wang J et al.. A novel selective progesterone receptor modulator asoprisnil (J867) inhibits proliferation and induces apoptosis in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells.  J Clin Endocrinol Metab. 2006;  91(4) 1296-1304
  • 36 Robbins B A, de la Vega D, Ogata K, Tan E M, Nakamura R M. Immunohistochemical detection of proliferating cell nuclear antigen in solid human malignancies.  Arch Pathol Lab Med. 1987;  111 841-845
  • 37 Wang J, Ohara N, Wang Z et al.. A novel selective progesterone receptor modulator asoprisnil (J867) down-regulates the expression of EGF, IGF-I, TGFbeta3 and their receptors in cultured uterine leiomyoma cells.  Hum Reprod. 2006;  21(7) 1869-1877
  • 38 Singh A B, Harris R C. Autocrine, paracrine and juxtacrine signaling by EGFR ligands.  Cell Signal. 2005;  17(10) 1183-1193
  • 39 Yakar S, Leroith D, Brodt P. The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: lessons from animal models.  Cytokine Growth Factor Rev. 2005;  16(4-5) 407-420
  • 40 de Caestecker M. The transforming growth factor-β superfamily of receptors.  Cytokine Growth Factor Rev. 2004;  15(1) 1-11
  • 41 Lutz M, Knaus P. Integration of the TGF-β pathway into the cellular signalling network.  Cell Signal. 2002;  14(12) 977-988
  • 42 Wrana J L, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-β receptor.  Nature. 1994;  370(6488) 341-347
  • 43 Lawler S, Feng X-H, Chen R-H et al.. The type II transforming growth factor-β receptor autophosphorylates not only on serine and threonine but also on tyrosine residues.  J Biol Chem. 1997;  272(23) 14850-14859
  • 44 Lee B S, Nowak R A. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-β 3 (TGF β 3) and altered responses to the antiproliferative effects of TGF β.  J Clin Endocrinol Metab. 2001;  86(2) 913-920
  • 45 Lange C A. Making sense of cross-talk between steroid hormone receptors and intracellular signaling pathways: who will have the last word?.  Mol Endocrinol. 2004;  18(2) 269-278
  • 46 Faivre E, Skildum A, Pierson-Mullany L, Lange C A. Integration of progesterone receptor mediated rapid signaling and nuclear actions in breast cancer cell models: role of mitogen-activated protein kinases and cell cycle regulators.  Steroids. 2005;  70(5–7) 418-426
  • 47 Lange C A, Richer J K, Shen T, Horwitz K B. Convergence of progesterone and epidermal growth factor signaling in breast cancer. Potentiation of mitogen-activated protein kinase pathways.  J Biol Chem. 1998;  273(47) 31308-31316
  • 48 Migliaccio A, Piccolo D, Castoria G et al.. Activation of the Src/p21 ras /Erk pathway by progesterone receptor via cross-talk with estrogen receptor.  EMBO J. 1998;  17 2008-2018
  • 49 Wang S, El-Deiry W S. TRAIL and apoptosis induction by TNF-family death receptors.  Oncogene. 2003;  22(53) 8628-8633
  • 50 Riedl S J, Shi Y. Molecular mechanisms of caspase regulation during apoptosis.  Nat Rev Mol Cell Biol. 2004;  5(11) 897-907
  • 51 Shiozaki E N, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology.  Trends Biochem Sci. 2004;  29 486-494
  • 52 Shi Y. Caspase activation, inhibition, and reactivation: a mechanistic view.  Protein Sci. 2004;  13(8) 1979-1987
  • 53 Cohen G M. Caspases: the executioners of apoptosis.  Biochem J. 1997;  326(Pt 1) 1-16
  • 54 Bouchard V J, Rouleau M, Poirier G G. PARP-1, a determinant of cell survival in response to DNA damage.  Exp Hematol. 2003;  31(6) 446-454
  • 55 Pieper A A, Verma A, Zhang J, Snyder S H. Poly (ADP-ribose) polymerase, nitric oxide and cell death.  Trends Pharmacol Sci. 1999;  20(4) 171-181
  • 56 Reed J C, Jurgensmeier J M, Matsuyama S. Bcl-2 family proteins and mitochondria.  Biochim Biophys Acta. 1998;  1366(1–2) 127-137
  • 57 Yin P, Lin Z, Cheng Y-H et al.. Progesterone receptor regulates Bcl-2 gene expression through direct binding to its promoter region in uterine leiomyoma cells.  J Clin Endocrinol Metab. 2007;  92(11) 4459-4466
  • 58 Sheikh M S, Huang Y. Death receptors as targets of cancer therapeutics.  Curr Cancer Drug Targets. 2004;  4(1) 97-104
  • 59 Yagita H, Takeda K, Hayakawa Y, Smyth M J, Okumura K. TRAIL and its receptors as targets for cancer therapy.  Cancer Sci. 2004;  95(10) 777-783
  • 60 Hoffman P J, Milliken D B, Gregg L C, Davis R R, Gregg J P. Molecular characterization of uterine fibroids and its implication for underlying mechanisms of pathogenesis.  Fertil Steril. 2004;  82 639-649
  • 61 Sasaki H, Ohara N, Xu Q et al.. A novel selective progesterone receptor modulator asoprisnil activates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated signaling pathway in cultured human uterine leiomyoma cells in the absence of comparable effects on myometrial cells.  J Clin Endocrinol Metab. 2007;  92(2) 616-623
  • 62 Schimmer A D. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice.  Cancer Res. 2004;  64(20) 7183-7190
  • 63 Deveraux Q L, Reed J C. IAP family proteins—suppressors of apoptosis.  Genes Dev. 1999;  13(3) 239-252
  • 64 Zhang X D, Zhang X Y, Gray C P, Nguyen T, Hersey P. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria.  Cancer Res. 2001;  61(19) 7339-7348
  • 65 Shi R-X, Ong C-N, Shen H-M. Protein kinase C inhibition and x-linked inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cancer cells.  Cancer Res. 2005;  65(17) 7815-7823
  • 66 Walocha J A, Litwin J A, Miodoński A J. Vascular system of intramural leiomyomata revealed by corrosion casting and scanning electron microscopy.  Hum Reprod. 2003;  18(5) 1088-1093
  • 67 Hague S, Zhang L, Oehler M K et al.. Expression of the hypoxically regulated angiogenic factor adrenomedullin correlates with uterine leiomyoma vascular density.  Clin Cancer Res. 2000;  6(7) 2808-2814
  • 68 Gentry C C, Okolo S O, Fong L F, Crow J C, Maclean A B, Perrett C W. Quantification of vascular endothelial growth factor-A in leiomyomas and adjacent myometrium.  Clin Sci (Lond). 2001;  101(6) 691-695
  • 69 Cross M J, Dixelius J, Matsumoto T, Claesson-Welsh L. VEGF-receptor signal transduction.  Trends Biochem Sci. 2003;  28(9) 488-494
  • 70 Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors.  Nat Med. 2003;  9(6) 669-676
  • 71 Brown L F, Detmar M, Tognazzi K, Abu-Jawdeh G, Iruela-Arispe M L. Uterine smooth muscle cells express functional receptors (flt-1 and KDR) for vascular permeability factor/vascular endothelial growth factor.  Lab Invest. 1997;  76(2) 245-255
  • 72 Zhao Y, Hague S, Manek S, Zhang L, Bicknell R, Rees M C. PCR display identifies tamoxifen induction of the novel angiogenic factor adrenomedullin by a non estrogenic mechanism in the human endometrium.  Oncogene. 1998;  16(3) 409-415
  • 73 Ribatti D, Guidolin D, Conconi M T et al.. Vinblastine inhibits the angiogenic response induced by adrenomedullin in vitro and in vivo.  Oncogene. 2003;  22(41) 6458-6461
  • 74 Kato H, Shichiri M, Marumo F, Hirata Y. Adrenomedullin as an autocrine/paracrine apoptosis survival factor for rat endothelial cells.  Endocrinology. 1997;  138(6) 2615-2620
  • 75 Greb R R, Heikinheimo O, Williams R F, Hodgen G D, Goodman A L. Vascular endothelial growth factor in primate endometrium is regulated by oestrogen-receptor and progesterone-receptor ligands in vivo.  Hum Reprod. 1997;  12(6) 1280-1292
  • 76 Ancelin M, Buteau-Lozano H, Meduri G et al.. A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and vascular permeability in human uterus.  Proc Natl Acad Sci U S A. 2002;  99(9) 6023-6028
  • 77 Thota C, Gangula P RR, Dong Y L, Yallampalli C. Changes in the expression of calcitonin receptor-like receptor, receptor activity-modifying protein (RAMP) 1, RAMP2, and RAMP3 in rat uterus during pregnancy, labor, and by steroid hormone treatments.  Biol Reprod. 2003;  69(4) 1432-1437
  • 78 Thota C, Yallampalli C. Progesterone upregulates calcitonin gene-related peptide and adrenomedullin receptor components and cyclic adenosine 3'5′-monophosphate generation in Eker rat uterine smooth muscle cell line.  Biol Reprod. 2005;  72(2) 416-422
  • 79 Xu Q, Ohara N, Chen W et al.. Progesterone receptor modulator CDB-2914 down-regulates vascular endothelial growth factor, adrenomedullin and their receptors and modulates progesterone receptor content in cultured human uterine leiomyoma cells.  Hum Reprod. 2006;  21(9) 2408-2416
  • 80 Shiraishi T, Yoshida T, Nakata S et al.. Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells.  Cancer Res. 2005;  65(14) 6364-6370
  • 81 Zhang K, Kaufman R J. The unfolded protein response: a stress signaling pathway critical for health and disease.  Neurology. 2006;  66(2, suppl 1) S102-S109
  • 82 Szegezdi E, Logue S E, Gorman A M, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis.  EMBO Rep. 2006;  7(9) 880-885
  • 83 Xu C, Bailly-Maitre B, Reed J C. Endoplasmic reticulum stress: cell life and death decisions.  J Clin Invest. 2005;  115(10) 2656-2664
  • 84 Kadowaki H, Nishitoh H, Ichijo H. Survival and apoptosis signals in ER stress: the role of protein kinases.  J Chem Neuroanat. 2004;  28(1–2) 93-100
  • 85 Harding H P, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase.  Nature. 1999;  397(6716) 271-274
  • 86 Marciniak S J, Yun C Y, Oyadomari S et al.. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum.  Genes Dev. 2004;  18(24) 3066-3077
  • 87 Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death.  EMBO J. 2005;  24(6) 1243-1255
  • 88 Annis M G, Zamzami N, Zhu W et al.. Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event.  Oncogene. 2001;  20(16) 1939-1952
  • 89 Zong W-X, Li C, Hatzivassiliou G et al.. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis.  J Cell Biol. 2003;  162(1) 59-69
  • 90 Xu Q, Ohara N, Liu J et al.. Selective progesterone receptor modulator asoprisnil induces endoplasmic reticulum stress in cultured human uterine leiomyoma cells.  Am J Physiol Endocrinol Metab. 2007;  293 E1002-E1011
  • 91 Oyadomari S, Koizumi A, Takeda K et al.. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes.  J Clin Invest. 2002;  109(4) 525-532
  • 92 Zinszner H, Kuroda M, Wang X Z et al.. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum.  Genes Dev. 1998;  12(7) 982-995
  • 93 McCullough K D, Martindale J L, Klotz L-O, Aw T-Y, Holbrook N J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state.  Mol Cell Biol. 2001;  21(4) 1249-1259
  • 94 Adler H T, Chinery R, Wu D Y et al.. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins.  Mol Cell Biol. 1999;  19(10) 7050-7060
  • 95 Ma Y, Hendershot L M. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress.  J Biol Chem. 2003;  278(37) 34864-34873
  • 96 Novoa I, Zeng H, Harding H P, Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α.  J Cell Biol. 2001;  153(5) 1011-1022
  • 97 Boyce M, Bryant K F, Jousse C et al.. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress.  Science. 2005;  307(5711) 935-939
  • 98 Örd D, Örd T. Mouse NIPK interacts with ATF4 and affects its transcriptional activity.  Exp Cell Res. 2003;  286(2) 308-320
  • 99 Örd D, Örd T. Characterization of human NIPK (TRB3, SKIP3) gene activation in stressful conditions.  Biochem Biophys Res Commun. 2005;  330(1) 210-218
  • 100 Häcki J, Egger L, Monney L et al.. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2.  Oncogene. 2000;  19(19) 2286-2295
  • 101 Wang N S, Unkila M T, Reineks E Z, Distelhorst C W. Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death.  J Biol Chem. 2001;  276(47) 44117-44128
  • 102 Wei M C, Zong W-X, Cheng E HY et al.. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death.  Science. 2001;  292(5517) 727-730
  • 103 Bassik M C, Scorrano L, Oakes S A, Pozzan T, Korsmeyer S J. Phosphorylation of BCL-2 regulates ER Ca2+homeostasis and apoptosis.  EMBO J. 2004;  23(5) 1207-1216
  • 104 Oakes S A, Scorrano L, Opferman J T et al.. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum.  Proc Natl Acad Sci U S A. 2005;  102(1) 105-110
  • 105 Scorrano L, Oakes S A, Opferman J T et al.. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis.  Science. 2003;  300(5616) 135-139
  • 106 Nutt L K, Pataer A, Pahler J et al.. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+stores.  J Biol Chem. 2002;  277(11) 9219-9225
  • 107 Yamaguchi H, Wang H-G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells.  J Biol Chem. 2004;  279(44) 45495-45502
  • 108 Chirco R, Liu X W, Jung K K, Kim H R. Novel functions of TIMPs in cell signaling.  Cancer Metastasis Rev. 2006;  25(1) 99-113
  • 109 Gelse K, Pöschl E, Aigner T. Collagens—structure, function, and biosynthesis.  Adv Drug Deliv Rev. 2003;  55(12) 1531-1546
  • 110 Canty E G, Kadler K E. Procollagen trafficking, processing and fibrillogenesis.  J Cell Sci. 2005;  118(Pt 7) 1341-1353
  • 111 Stewart E A, Friedman A J, Peck K, Nowak R A. Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle.  J Clin Endocrinol Metab. 1994;  79(3) 900-906
  • 112 Wolańska M, Sobolewski K, Droźdźewicz M, Bańkowski E. Extracellular matrix components in uterine leiomyoma and their alteration during the tumour growth.  Mol Cell Biochem. 1998;  189(1–2) 145-152
  • 113 Berto A GA, Sampaio L O, Franco C RC, Cesar Jr R M, Michelacci Y M. A comparative analysis of structure and spatial distribution of decorin in human leiomyoma and normal myometrium.  Biochim Biophys Acta. 2003;  1619(1) 98-112
  • 114 Wang H, Mahadevappa M, Yamamoto K et al.. Distinctive proliferative phase differences in gene expression in human myometrium and leiomyomata.  Fertil Steril. 2003;  80(2) 266-276
  • 115 Leppert P C, Baginski T, Prupas C, Catherino W H, Pletcher S, Segars J H. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium.  Fertil Steril. 2004;  82(suppl 3) 1182-1187
  • 116 Curry Jr T E, Osteen K G. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle.  Endocr Rev. 2003;  24(4) 428-465
  • 117 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry.  Circ Res. 2003;  92(8) 827-839
  • 118 Guo H, Zucker S, Gordon M K, Toole B P, Biswas C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells.  J Biol Chem. 1997;  272(1) 24-27
  • 119 Kanekura T, Chen X, Kanzaki T. Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts.  Int J Cancer. 2002;  99(4) 520-528
  • 120 Schmidt R, Bültmann A, Ungerer M et al.. Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction.  Circulation. 2006;  113(6) 834-841
  • 121 Chung L, Dinakarpandian D, Yoshida N et al.. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis.  EMBO J. 2004;  23(15) 3020-3030
  • 122 Inada M, Wang Y, Byrne M H et al.. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification.  Proc Natl Acad Sci U S A. 2004;  101(49) 17192-17197
  • 123 Aimes R T, Quigley J P. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments.  J Biol Chem. 1995;  270(11) 5872-5876
  • 124 Allan J A, Docherty A J, Barker P J, Huskisson N S, Reynolds J J, Murphy G. Binding of gelatinases A and B to type-I collagen and other matrix components.  Biochem J. 1995;  309(Pt 1) 299-306
  • 125 Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules.  J Biol Chem. 1997;  272(4) 2446-2451
  • 126 Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs.  Cardiovasc Res. 2006;  69(3) 562-573
  • 127 Morikawa A, Ohara N, Xu Q et al.. Selective progesterone receptor modulator asoprisnil down-regulates collagen synthesis in cultured human uterine leiomyoma cells through up-regulating extracellular matrix metalloproteinase inducer.  Hum Reprod. 2008;  23(4) 944-951
  • 128 Xu Q, Ohara N, Liu J et al.. Progesterone receptor modulator CDB-2914 induces extracellular matrix metalloproteinase inducer in cultured human uterine leiomyoma cells.  Mol Hum Reprod. 2008;  14(3) 181-191
  • 129 Somasundaram R, Schuppan D, Type I. Type I, II, III, IV, V, and VI collagens serve as extracellular ligands for the isoforms of platelet-derived growth factor (AA, BB, and AB).  J Biol Chem. 1996;  271(43) 26884-26891
  • 130 Liang M, Wang H, Zhang Y, Lu S, Wang Z. Expression and functional analysis of platelet-derived growth factor in uterine leiomyomata.  Cancer Biol Ther. 2006;  5(1) 28-33
  • 131 Madauss K P, Grygielko E T, Deng S-J et al.. A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator.  Mol Endocrinol. 2007;  21(5) 1066-1081

Takeshi MaruoM.D. Ph.D. 

Director of Kobe Children's Hospital and Feto-Maternal Medical Center 1-1

Takakuradai 1-Chome, Suma-ku, Kobe, 654-0081, Japan

Email: maruotakeshi@w7.dion.ne.jp

    >