Zusammenfassung
Kontinuierliche technische Innovationen der CT-Technologie sorgen in den letzten Jahren
für eine immer bessere klinische Einsatzfähigkeit der Modalität. Die 16- und-64-Zeiler-CT-Generation
hat die nicht-invasive CT-Koronarangiografie mit hoher Übereinstimmung zur invasiven
Katheterangiografie etabliert. Es wurde jedoch berechtigte Kritik zur hohen Röntgendosisexposition
geäußert. Das Problem ist derzeit im Fokus der technischen Entwicklung. Durch geschickte
Kombination aus modifizierten Rekonstruktionsverfahren und neuer Detektortechnologie
lassen sich die erforderlichen Dosisexpositionen um 80% senken. Damit ist die Methode
für die klinische Routine einsetzbar. Symptomatische Patienten mit mittlerer Vortestwahrscheinlichkeit
für eine KHK sind bereits als geeignet für eine primäre CT-Koronarangiografie identifiziert
worden. In einer mittlerweile unüberschaubaren Fülle von Publikationen werden Einsatzgebiete
in der Primärdiagnostik der KHK, bei der schnellen Abklärung von Bypassgefäßen und
von Koronaranomalien definiert. Weitere Möglichkeiten ergeben sich für den Einsatz
bei unklarem Thoraxschmerz und für die simultane Erfassung von Morphologie (Koronararterien)
und Funktion (Perfusion). Interessant wird in diesem Zusammenhang die wissenschaftliche
Evaluation der rein CT-basierten Perfusionsbildgebung. Möglicherweise ist dann eine
weitere Modalität wie das SPECT zur Akquisition von Perfusionsdatensätzen gar nicht
erforderlich.
Abstract
Continuous technical innovations during the last years have established cardiac CT
as a modality for noninvasive coronary angiography in clinical routine. 64 detector
row generations and beyond have shown high diagnostic accuracy for obstructive stenosis
detection in comparison to the standard of reference catheterization angiography.
But the high radiation dose exposure associated with helical cardiac CT acquisition
has sparked increasing concern in the medical community. The issue has been addressed
with the newest releases of technology. Dose reduction by 80% and more is achieved
with modified scan techniques rendering the method suitable for clinical routine.
Symptomatic patients with an intermediate pre-test probability have been identified
as the most suitable candidates for CT coronary angiography. Other appropriate indications
include the rapid assessment of bypass grafts and suspected coronary anomalies. CT
coronary angiography has been shown to be cost effective for the evaluation of patients
with acute chest pain in the emergency department. But CT is able to provide more
than coronary morphology, initial feasibility testing has shown that CT first-pass
myocardial imaging can visualize perfusion defects with adenosine induced vasodilatation.
Coronary morphology and functional perfusion studies have been shown to be complementary
providing incremental diagnostic value over either technique alone. In the next few
years a lot of comparison trials will establish the best suitable perfusion method
(SPECT, MRI or CT) for hybrid imaging with CT coronary angiography.
Schlüsselwörter
koronare Herzerkrankung - Computertomografie - Koronarangiografie
Key words
coronary artery disease - computed tomography - coronary angiography
Literatur
- 1
Abidov A, Gallagher M, Chinnaiyan KM. et al .
Clinical effectiveness of coronary computed tomographic angiography in the triage
of patients to cardiac catheterization and revascularization after inconclusive stress
testing: results of a 2-year prospective trial.
J Nucl Cardiol.
2009;
16
701-713
- 2
Bastarrika G, Lee YS, Huda W. et al .
CT of coronary artery disease.
Radiology..
2009;
253
317-338
- 3
Berman DS, Hachamovitch R, Shaw LJ. et al .
Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance:
Noninvasive risk stratification and a conceptual framework for the selection of noninvasive
imaging tests in patients with known or suspected coronary artery disease.
J Nucl Med.
2006;
47
1107-1118
- 4
Boden WE, O’Rourke RA, Teo KK. et al .
Optimal medical therapy with or without PCI for stable coronary disease.
The New England Journal of Medicine.
2007;
356
1503-1516
- 5
Brodoefel H, Burgstahler C, Tsiflikas I. et al .
Dual-source CT: effect of heart rate, heart rate variability, and calcification on
image quality and diagnostic accuracy.
Radiology.
2008;
247
346-355
- 6
Cademartiri F, Mollet N, Runza G. et al .
Influence of intracoronary attenuation on coronary plaque measurements using multislice
computed tomography: observations in an ex vivo model of coronary computed tomography
angiography.
European Radiology.
2005;
15
1426-1431
- 7
Carbonaro S, Villines TC, Hausleiter J. et al .
International, multidisciplinary update of the 2006 Appropriateness Criteria for cardiac
computed tomography.
Journal of cardiovascular computed tomography.
2009;
3
224-232
- 8
Detrano R, Guerci AD, Carr JJ. et al .
Coronary calcium as a predictor of coronary events in four racial or ethnic groups.
N Engl J Med.
2008;
358
1336-1345
- 9
Dewey M, Hamm B.
Cost effectiveness of coronary angiography and calcium scoring using CT and stress
MRI for diagnosis of coronary artery disease.
European Radiology.
2007;
17
1301-1309
- 10
Diamond GA, Forrester JS.
Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease.
N Engl J Med.
1979;
300
1350-1358
- 11
Feuerlein S, Roessl E, Proksa R.
et al.
Multienergy Photon-counting K-edge Imaging: Potential for Improved Luminal Depiction
in Vascular Imaging.
Radiology.
2008;
2492080560
- 12
Flohr TG, McCollough CH, Bruder H. et al .
First performance evaluation of a dual-source CT (DSCT) system.
European Radiology.
2006;
16
256-268
- 13
Gaemperli O, Schepis T, Koepfli P. et al .
Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary
stenoses as assessed with myocardial perfusion SPECT.
Eur J Nucl Med Mol Imaging.
2007;
34
1162-1171
- 14
Gaemperli O, Schepis T, Valenta I. et al .
Functionally relevant coronary artery disease: comparison of 64-section CT angiography
with myocardial perfusion SPECT.
Radiology.
2008;
248
414-423
- 15
Gaemperli O, Kaufmann P.
Multimodality cardiac imaging.
J Nucl Cardiol.
2009;
- 16
Garcia M, Lessick J, Hoffmann MH. Investigators CATSCANS .
Accuracy of 16-row multidetector computed tomography for the assessment of coronary
artery stenosis.
JAMA.
2006;
296
403-411
- 17
George RT, Jerosch-Herold M, Silva C. et al .
Quantification of myocardial perfusion using dynamic 64-detector computed tomography.
Invest Radiol.
2007;
42
815-822
- 18
George RT, Arbab-Zadeh A, Miller JM. et al .
Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion
imaging: a pilot study evaluating the transmural extent of perfusion abnormalities
to predict atherosclerosis causing myocardial ischemia.
Circ Cardiovasc Imaging.
2009;
2
174-182
- 19
Goldstein J, Gallagher M, O’neill W. et al .
A randomized controlled trial of multi-slice coronary computed tomography for evaluation
of acute chest pain.
Journal of the American College of Cardiology.
2007;
49
863-871
- 20
Halliburton SS, Schoenhagen P, Nair A. et al .
Contrast enhancement of coronary atherosclerotic plaque: a high-resolution, multidetector-row
computed tomography study of pressure-perfused, human ex-vivo coronary arteries.
Coron Artery Dis..
2006;
17
553-560
- 21
Hamon M, Morello R, Riddell J. et al .
Coronary arteries: diagnostic performance of 16-versus 64-section spiral CT compared
with invasive coronary angiography meta-analysis.
Radiology.
2007;
245
720
- 22
Hausleiter J, Meyer T, Hermann F. et al .
Estimated radiation dose associated with cardiac CT angiography.
JAMA: The Journal of the American Medical Association.
2009;
301
500-507
- 23
Hendel R, Patel M, Kramer C. et al .
ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed
tomography and cardiac magnetic resonance imaging: a report of the American College
of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria
Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography,
Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology,
North American Society for Cardiac Imaging, Society for Cardiovascular Angiography
and Interventions, and Society of Interventional Radiology.
Journal of the American College of Cardiology.
2006;
48
1475-1497
- 24
Henneman MM, Schuijf JD, Jukema JW. et al .
Assessment of global and regional left ventricular function and volumes with 64-slice
MSCT: a comparison with 2D echocardiography.
J Nucl Cardiol.
2006;
13
480-487
- 25
Higgins CB, Siemers PT, Newell JD. et al .
Role of iodinated contrast material in the evaluation of myocardial infarction by
computerized transmission tomography.
Investigative Radiology.
1980;
15
S176-S182
- 26
Hoffmann MH, Shi H, Manzke R. et al .
Noninvasive coronary angiography with 16-detector row CT: effect of heart rate.
Radiology.
2005;
234
86-97
- 27
Hoffmann MH, Shi H, Schmitz BL. et al .
Noninvasive coronary angiography with multislice computed tomography.
JAMA.
2005;
293
2471-2478
- 28
Hoffmann U, Bamberg F, Chae CU. et al .
Coronary computed tomography angiography for early triage of patients with acute chest
pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography)
trial.
Journal of the American College of Cardiology.
2009;
53
1642-1650
- 29
Hollander JE, Chang AM, Shofer FS. et al .
Coronary computed tomographic angiography for rapid discharge of low-risk patients
with potential acute coronary syndromes.
Ann Emerg Med.
2009;
53
295-304
- 30
Husmann L, Gaemperli O, Schepis T. et al .
Accuracy of quantitative coronary angiography with computed tomography and its dependency
on plaque composition: plaque composition and accuracy of cardiac CT.
Int J Cardiovasc Imaging.
2008;
24
895-904
- 31
Kamdar AR, Meadows TA, Roselli EE. et al .
Multidetector computed tomographic angiography in planning of reoperative cardiothoracic
surgery.
Ann Thorac Surg.
2008;
85
1239-1245
- 32
Klass O, Walker M, Siebach A.
et al.
Prospectively gated axial CT coronary angiography: comparison of image quality and
effective radiation dose between 64- and 256-slice CT.
Eur Radiol..
2009;
- 33
Leber A, Becker A, Knez A. et al .
Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in
the proximal coronary system a comparative study using intravascular ultrasound.
Journal of the American College of Cardiology.
2006;
47
672-677
- 34
Lell M, Hinkmann F, Anders K. et al .
High-pitch electrocardiogram-triggered computed tomography of the chest: initial results.
Investigative radiology.
2009;
44
728-733
- 35
Lipton M, Higgins C, Farmer D. et al .
Cardiac imaging with a high-speed cine-CT scanner: preliminary results.
Radiology.
1984;
152
579-582
- 36
Maintz D, Burg MC, Seifarth H. et al .
Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation
of 29 different stent types with dual-source CT.
European Radiology.
2009;
19
42-49
- 37
Meijboom W, Mollet N, van Mieghem CA. et al .
Pre-operative computed tomography coronary angiography to detect significant coronary
artery disease in patients referred for cardiac valve surgery.
Journal of the American College of Cardiology.
2006;
48
1658-1665
- 38
Meijboom WB, van Mieghem CA, Mollet N. et al .
64-slice computed tomography coronary angiography in patients with high, intermediate,
or low pretest probability of significant coronary artery disease.
Journal of the American College of Cardiology.
2007;
50
1469-1475
- 39
Min JK, Shaw LJ, Berman DS. et al .
Costs and clinical outcomes in individuals without known coronary artery disease undergoing
coronary computed tomographic angiography from an analysis of Medicare category III
transaction codes.
Am J Cardiol.
2008;
102
672-678
- 40
Nieman K, Oudkerk M, Rensing BJ. et al .
Coronary angiography with multi-slice computed tomography.
Lancet.
2001;
357
599-603
- 41
Nieman K, Shapiro MD, Ferencik M. et al .
Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to
MR imaging.
Radiology.
2008;
247
49-56
- 42
Pundziute G, Schuijf J, Jukema J. et al .
Prognostic value of multislice computed tomography coronary angiography in patients
with known or suspected coronary artery disease.
Journal of the American College of Cardiology.
2007;
49
62-70
- 43
Ruzsics B, Schwarz F, Schoepf UJ. et al .
Comparison of dual-energy computed tomography of the heart with single photon emission
computed tomography for assessment of coronary artery stenosis and of the myocardial
blood supply.
Am J Cardiol.
2009;
104
318-326
- 44
Rybicki FJ, Otero HJ, Steigner ML. et al .
Initial evaluation of coronary images from 320-detector row computed tomography.
Int J Cardiovasc Imaging.
2008;
24
535-546
- 45
Sampson UK, Dorbala S, Limaye A. et al .
Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron
emission tomography/computed tomography in the detection of coronary artery disease.
Journal of the American College of Cardiology.
2007;
49
1052-1058
- 46
Serruys PW, Morice MC, Kappetein AP. et al .
Percutaneous coronary intervention versus coronary-artery bypass grafting for severe
coronary artery disease.
The New England Journal of Medicine.
2009;
360
961-972
- 47
Soon KH, Cox N, Wong A. et al .
CT coronary angiography predicts the outcome of percutaneous coronary intervention
of chronic total occlusion.
J Interv Cardiol.
2007;
20
359-366
- 48
Sun J, Zhang Z, Lu B. et al .
Identification and quantification of coronary atherosclerotic plaques: a comparison
of 64-MDCT and intravascular ultrasound.
American Journal of Roentgenology.
2008;
190
748-754
- 49
Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R. et al .
Diagnostic performance of multidetector CT angiography for assessment of coronary
artery disease: meta-analysis.
Radiology.
2007;
244
419-428
- 50
Weustink AC, Nieman K, Pugliese F. et al .
Diagnostic accuracy of computed tomography angiography in patients after bypass grafting:
comparison with invasive coronary angiography.
JACC Cardiovasc Imaging.
2009;
2
816-824
- 51
Ziegler A, Nielsen T, Grass M.
Iterative reconstruction of a region of interest for transmission tomography.
Med Phys.
2008;
35
1317
Korrespondenzadresse
Prof. Dr. Martin H. K. Hoffmann
Klinik für Diagnostische und
Interventionelle Radiologie
Unikliniken Ulm
Standort Safranberg
Steinhoevelstraße 9
89075 Ulm
Phone: +49/731/500 61003
Fax: +49/731/500 61002
Email: martin.hoffmann@uniklinik-ulm.de