Synlett 2011(9): 1235-1238  
DOI: 10.1055/s-0030-1259939
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantioselective Brønsted Acid Catalysis in the Friedel-Crafts Reaction of Indoles with Secondary ortho-Hydroxybenzylic Alcohols

David Wilcke, Eberhardt Herdtweck, Thorsten Bach*
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
Fax: +49(89)28913315; e-Mail: thorsten.bach@ch.tum.de;
Further Information

Publication History

Received 28 January 2011
Publication Date:
18 April 2011 (online)

Abstract

The reaction of indole and various methyl-substituted indoles with the title compounds was studied in the presence of chiral phosphoric acids, which act as Brønsted acid catalysts. While yields were generally high (>90%), significant enantioselectivities (up to 77% ee) were only achieved for certain substrate-catalyst combinations. In addition, a kinetic resolution of the starting material was observed, which led to an enrichment of one chiral alcohol to up to 68% ee after 76% conversion. The Friedel-Crafts reaction is not stereospecific (no direct SN2-type substitution), but rather is likely to proceed via a cation, which is bound to the chiral Brønsted acid or its anion in a close contact ion pair.

    References and Notes

  • 1 Short review: Cozzi PG. Benfatti F. Angew. Chem. Int. Ed.  2010,  49:  256 ; Angew. Chem.  2010,  122:  264 
  • 2a Catalytic Asymmetric Friedel-Crafts Alkylations   Bandini M. Umani-Ronchi A. Wiley-VCH; Weinheim: 2009. 
  • 2b Rueping M. Nachtsheim BJ. Beilstein J. Org. Chem.  2010,  6:  No. 6 
  • 2c Terrasson V. Marcia de Figueiredo R. Campagne JM. Eur. J. Org. Chem.  2010,  2635 
  • 2d Poulsen TB. Jørgensen KA. Chem. Rev.  2008,  108:  2903 
  • 3a Mühlthau F. Schuster O. Bach T. J. Am. Chem. Soc.  2005,  127:  9348 
  • 3b Mühlthau F. Bach T. Synthesis  2005,  3428 
  • 3c Stadler D. Mühlthau F. Rubenbauer P. Herdtweck E. Bach T. Synlett  2006,  2573 
  • 3d Stadler D. Bach T. Chem. Asian J.  2008,  3:  272 
  • 3e Stadler D. Bach T. Angew. Chem. Int. Ed.  2008,  47:  7557 
  • 4a Mühlthau F. Stadler D. Goeppert A. Olah GA. Prakash GKS. Bach T. J. Am. Chem. Soc.  2006,  128:  9668 
  • 4b Stadler D. Goeppert A. Rasul G. Olah GA. Prakash GKS. Bach T. J. Org. Chem.  2009,  74:  312 
  • Reviews:
  • 5a Terada M. Synthesis  2010,  1929 
  • 5b You S.-L. Cai Q. Zeng M. Chem. Soc. Rev.  2009,  38:  2190 
  • 5c Terada M. Chem. Commun.  2008,  4097 
  • 5d Akiyama T. Chem. Rev.  2007,  107:  5744 
  • 5e Zamfir A. Schenker S. Freund M. Tsogoeva SB. Org. Biomol. Chem.  2010,  8:  5262 
  • 6 Uraguchi T. Terada M. J. Am. Chem. Soc.  2004,  126:  5356 
  • 7 Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed.  2004,  43:  1566 
  • 8a Sun F.-L. Zeng M. Gu Q. You S.-L. Chem. Eur.
    J.  2009,  15:  8709 
  • 8b Sun F.-L. Zheng X.-J. Gu Q. He Q.-L. You S.-L. Eur. J. Org. Chem.  2010,  47 
  • 8c See also: Rueping M. Nachtsheim BJ. Moreth SA. Bolte M. Angew. Chem. Int. Ed.  2008,  47:  593 
  • 9 Guo Q.-X. Peng Y.-G. Zhang J.-W. Song L. Feng Z. Gong L.-Z. Org. Lett.  2009,  11:  4620 
  • 10 Liang T. Zhang Z. Antilla JC. Angew. Chem. Int. Ed.  2010,  49:  9734 
  • For recent work on ion pairs with onium and iminium ions, see:
  • 11a Čorić I. Müller S. List B. J. Am. Chem. Soc.  2010,  132:  17370 
  • 11b Yu X. Lu A. Wang Y. Wu G. Song H. Zhou Z. Tang C. Eur. J. Org. Chem.  2011,  892 ; and references cited therein
  • 12 Nakashima D. Yamamoto H. J. Am. Chem. Soc.  2006,  128:  9626 
  • 13 Specht DP. Martic PA. Farid S. Tetrahedron  1982,  38:  1203 
  • 14 Katritzky AR. Ji Y. Fang Y. Prakash I. J. Org. Chem.  2001,  66:  5613 
  • 15 Baciocchi E. Bietti M. Putignani L. Steenken S. J. Am. Chem. Soc.  1996,  118:  5952 
  • 16a Wu TR. Shen L. Chong JM. Org. Lett.  2004,  6:  2701 
  • 16b Jacques J. Fouquey C. Org. Synth.  1989,  67: 
  • 16c Storer RI. Carrera DE. Ni Y. MacMillan DWC. J. Am. Chem. Soc.  2006,  128:  84 
  • 17 Klussmann M. Ratjen L. Hoffmann S. Wakchaure V. Goddard R. List B. Synlett  2010,  2189 
  • Relevant reviews:
  • 18a Bandini M. Melloni A. Tommasi S. Umani-Ronchi A. Synlett  2005,  1199 
  • 18b Bandini M. Eichholzer A. Angew. Chem. Int. Ed.  2009,  48:  9608 
  • 18c Zeng M. You S.-L. Synlett  2010,  1289 
  • 18d Bartoli G. Bencivenni G. Dalpozzo R. Chem. Soc. Rev.  2010,  39:  4449 
  • 21 First example of a kinetic resolution with chiral phosphoric acids: Enders D. Narine AA. Toulgoat F. Bisschops T. Angew. Chem. Int. Ed.  2008,  47:  5661 
19

Representative Procedure (8)
A Schlenk flask containing 250 mg of 4 Å MS was charged with benzylic alcohol 3 (21.0 mg, 100 µmol) and indole (46.9 mg, 400 µmol) in dry trifluorotoluene (1.5 mL). Catalyst 7g (7.53 mg, 10 µmol) was added, and the resulting mixture was stirred at r.t. until the starting material was completely consumed (monitored by TLC). The crude reaction mixture was purified directly by flash column chromatography on silica gel (eluent: pentane-Et2O = 4:1 to 2:1) yielding compound 8 (30.9 mg, 100 µmol, quant., 50% ee) as a light-brown solid. ¹H NMR (360 MHz, CDCl3): δ = 1.15 (s, 9 H), 3.71 (s, 3 H), 4.51 (s, 1 H), 5.30 (s, 1 H), 6.28 (d, 4 J = 2.3 Hz, 1 H), 6.44 (dd, ³ J = 8.5 Hz, 4 J = 2.3 Hz, 1 H), 7.04 (virt. t, ³ J = ca. 7.5 Hz, 1 H), 7.15 (virt. t, ³ J = ca. 7.6 Hz, 1 H), 7.26 (d, ³ J = 8.5 Hz, 1 H), 7.29 (d, ³ J = 8.1 Hz, 1 H), 7.36 (d, ³ J = 1.9 Hz, 1 H), 7.52 (d, ³ J = 8.0 Hz, 1 H), 8.02 (br s, 1 H) ppm. ¹³C NMR (90.6 MHz, CDCl3): δ = 28.9, 35.8, 45.4, 55.1, 101.6, 105.8, 110.8, 117.3, 119.4, 119.5, 121.2, 121.5, 122.2, 128.7, 132.1, 135.5, 154.9, 158.6 ppm. HRMS: m/z calcd for C20H23NO2: 309.1723; found: 309.1724.

20

An analysis of the absolute structure based on Bayesian statistics and Friedel pairs with a coverage of 99% resulted in a probability of 1.00.
Crystal Data
Formula: C20H23NO2˙C4H10O; M r = 383.51; crystal color and shape: colorless fragment, crystal dimensions: 0.13 × 0.23 × 0.69 mm; crystal system: monoclinic; space group: P21 (no. 4); a = 10.2950 (4), b = 7.7382 (3), c = 15.1602 (5) Å, β = 104.737 (2)˚; V = 1168.00(8) ų; Z = 2; µ MoK α = 0.071 mm; ρ calcd = 1.090 g cm; θ range = 1.39-25.33˚; data collected: 27134; independent data [I o > 2σ (I o)/all data/R int]: 3857/4255/0.027; data/restraints/parameters: 4255/1/267; R1 [I o > 2σ (I o)/all data]: 0.0376/0.0419; wR2
[I o > 2σ (I o)/all data]: 0.1086/0.1119; GOF = 1.089; Δρ max/min: 0.11/-0.13 e Å; Flack parameter; x = -0.6 (13); ‘Flack Equivalent’ Hooft parameter y = -0.3 (3). For detailed information see Supporting Information. CCDC 808871
[(-)-8] contains the supplementary crystallographic data for this compound. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

22

Crystal Data
Formula: C12H18O3; M r = 210.26; crystal color and shape: colorless fragment, crystal dimensions: 0.46 × 0.51 × 0.61 mm; crystal system: orthorhombic; space group: P212121 (no. 19); a = 6.6950 (1), b = 9.1455 (2), c = 19.2531 (4) Å; V = 1178.85 (4) ų; Z = 4; µ CuK α = 0.680 mm; ρ calcd = 1.185 g cm; θ range = 4.59-66.30˚; data collected: 27197; independent data [I o > 2σ (I o)/all data/R int]: 1984/1995/0.027; data/restraints/parameters: 1995/0/209; R1 [I o > 2σ (I o)/all data]: 0.0215/0.0216; wR2 [I o > 2σ (I o)/all data]: 0.0582/0.0582; GOF = 1.111; Δρ max/min: 0.13/-0.12 e Å; Flack parameter; x = 0.03 (15); ‘Flack Equivalent’ Hooft parameter y = 0.05 (3). For detailed information see Supporting Information. CCDC 808870 [(+)-3)] contains the supplementary crystallographic data for this compound. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.