Synlett 2011(9): 1318-1320  
DOI: 10.1055/s-0030-1260547
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Short and Efficient Syntheses of Gabosine I, Streptol, 7-O-Acetylstreptol, 1-epi-Streptol, Gabosine K, and Carba-α-d-glucose from δ-d-Gluconolactone

Tony K. M. Shing*, Y. Chen, W. L. Ng
Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, Hong Kong, P. R. of China
Fax: +85226035057; e-Mail: tonyshing@cuhk.edu.hk;
Weitere Informationen

Publikationsverlauf

Received 10 February 2011
Publikationsdatum:
29. April 2011 (online)

Abstract

δ-d-Gluconolactone was carbocyclized into an EOM-protected cyclohexenone in four steps involving perethoxymethylation, phosphonate anion addition, reduction, and oxidation with concomitant Horner-Wadsworth-Emmons alkenation. The stable key enone was efficiently transformed into gabosine I (five steps with 65% overall yield from δ-d-gluconolactone), streptol (six steps, 54% overall yield), 7-O-acetyl-streptol (seven steps, 42% overall yield), 1-epi-streptol (six steps, 49% overall yield), gabosine K (seven steps, 40% overall yield), and carba-α-d-glucopyranose (seven steps, 47% overall yield). The present chemical syntheses, from commercially available δ-d-gluconolactone, provide the highest overall yields of these molecules to date.

    References and Notes

  • 1 Bach G. Breiding MS. Grabley S. Hammann P. Hütter K. Thiericke R. Uhr H. Wink J. Zeeck A. Liebig. Ann. Chem.  1993,  241 
  • 2a Huntley CFM. Hamilton DS. Creighton DJ. Ganem B. Org. Lett.  2000,  2:  3143 
  • 2b Kamiya D. Uchihata Y. Ichikawa E. Kato K. Umezawa K. Bioorg. Med. Chem. Lett.  2005,  15:  1111 
  • 3 Tang YQ. Maul C. Höfs R. Sattler I. Grabley S. Feng XZ. Zeek A. Thiericke R. Eur. J. Org. Chem.  2000,  149 
  • 4 Sedmera P. Halada P. Pospísil S. Magn. Reson. Chem.  2009,  47:  519 
  • 5a Mahmud T. Curr. Opin. Chem. Biol.  2009,  13:  161 
  • 5b Mahmud T. Lee S. Floss HG. Chem. Rec.  2001,  1:  300 
  • 6a Isogai A. Sakuda S. Nakayama J. Watanabe S. Suzuki A. Agric. Biol. Chem.  1987,  51:  2277 
  • 6b Kroutil W. Hagmann L. Schuez TC. Jungmann V. Pachlatko JP. J. Mol. Catal. B.: Enzym.  2005,  32:  247 
  • 7 For a synthesis of (+)-streptol, see: Mehta G. Pujar S. Ramesh SS. Islam K. Tetrahedron Lett.  2005,  46:  3373 
  • 8 Shing TKM. Cheng HM. Synlett  2010,  142 
  • 9a Arjona O. Gómez AM. López JC. Plumét J. Chem. Rev.  2007,  107:  1919 
  • 9b Ogawa S. Kanto M. Suzuki Y. Mini-Rev. Med. Chem.  2007,  7:  679 
  • 9c Aoyama H. Ogawa S. Sato T. Carbohydr. Res.  2009,  344:  2088 
  • 9d Deleuze A. Menozzi C. Sollogoub M. Sinaÿ P. Angew. Chem. Int. Ed.  2004,  43:  6680 
  • For synthesis of carba-α-d-glucopyranose, see:
  • 10a Gómez AM. Moreno E. Valverde S. López JC. Tetrahedron Lett.  2002,  43:  5559 
  • 10b Shing TKM. Cui Y. Tang Y. J. Chem. Soc., Chem. Commun.  1991,  756 
  • 11 Shing TKM. Cheng HM. J. Org. Chem.  2007,  72:  6610 
  • 12 Fukase H. Horii S. J. Org. Chem.  1992,  57:  3651 
  • 13 Mancuso AJ. Swern D. Synthesis  1981,  165 
  • 14 Blanchette MA. Choy W. Davis JT. Essenfeld AP. Masamune S. Roush WR. Sakai T. Tetrahedron Lett.  1984,  25:  2183 
  • 15a Lubineau A. Billault I. J. Org. Chem.  1998,  63:  5668 
  • 15b Takahashi T. Yamakoshi Y. Okayama K. Yamada J. Ge W.-Y. Koizumi T. Heterocycles  2002,  56:  209 
  • 17 Ogawa S. Sato K. Miyamoto Y. J. Chem. Soc., Perkin Trans. 1  1993,  691 
16

For details, see Supporting Information.