Aktuelle Rheumatologie 2010; 35(3): 189-193
DOI: 10.1055/s-0030-1261890
Übersichtsarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Opioide und periphere Entzündungsmechanismen

Opioids and Peripheral Mechanisms of InflammationL. J. Lang , C. Stein
  • Charité – Campus Benjamin Franklin, Klinik für Anästhesiologie und Operative Intensivmedizin, Berlin
Further Information

Publication History

Publication Date:
30 June 2010 (online)

Zusammenfassung

Lange galten Opioide als ausschließlich zentral wirksame Analgetika. Ende der 1980-iger Jahre gelang es erstmals, Opioidrezeptoren auf sensorischen Nervenfasern in peripheren Geweben nachzuweisen. Inzwischen kennen wir detailliert untersuchte Mechanismen eines peripheren Opioidsystems, das den Einfluss pathologischer Gewebeveränderungen auf Schmerzen, die lokale Wirkung von Opioiden an peripheren Nervenenden, die Produktion und Freisetzung von endogenen Opioidpeptiden aus Entzündungszellen sowie peripher vermittelte analgetische und anti-inflammatorische Effekte von Opioiden beinhaltet. Infolge dieser Fortschritte in der Grundlagenforschung kommen Erkenntnisse zum Wirkmechanismus von Opioiden in peripherem Gewebe mittlerweile in der Klinik zur Anwendung und haben sich in der Formulierung von Leitlinien niedergeschlagen. So wird z. B. zur postoperativen Analgesie nach Kniegelenksoperationen die intraartikuläre Injektion von Morphin als Therapiestandard empfohlen (http://www.guidelines.gov). Periphere opioidvermittelte Mechanismen zeichnen sich als vielversprechende Therapieansätze ab, insbesondere bei bereits länger bestehenden Entzündungserkrankungen. Zentrale Nebenwirkungen von Opioiden können bei ausschließlich peripherer Opioidwirkung ebenso umgangen werden wie die gefürchteten Nebenwirkungen einer chronischen Therapie mit nicht-steroidalen Antiphlogistika (NSAIDs).

Abstract

For ages opioids were believed to act solely as central analgesic drugs. In the late 1980s studies began to show that opioids not only activate opioid receptors in the brain and spinal cord but also those on peripheral sensory neurons. Since then, a detailed model of opioid pathways outside the central nervous system has been developed. It provides insight into the effects of pathological tissue changes on the generation of pain, the local action of opioids on peripheral neurons, the production and release of endogenous opioid peptides in immune cells, as well as endogenous peripherally mediated analgesic and anti-inflammatory effects of opioids. Subsequent to this progress in basic research, peripheral opioid effects have made their way from the bench to the bedside. For example, current clinical guidelines recommend the intra-articular injection of morphine after knee joint surgery for effective postoperative pain control (http://www.guidelines.gov). Peripheral mechanisms of opioid analgesia provide a tempting approach to pain treatment avoiding the adverse effects of centrally acting opioids and offering anti-inflammatory action without the dreaded side effects of non-steroidal anti-inflammatory drugs (NSAIDs).

Literatur

  • 1 Stein C, Schafer M, Machelska H. Attacking pain at its source: new perspectives on opioids.  Nat Med. 2003;  9 1003-1008
  • 2 Kalso E, Smith L, McQuay HJ. et al . No pain, no gain: clinical excellence and scientific rigour – lessons learned from IA morphine.  Pain. 2002;  98 269-275
  • 3 Schaible HG, Schmelz M, Tegeder I. Pathophysiology and treatment of pain in joint disease.  Adv Drug Deliv Rev. 2006;  58 323-342
  • 4 Schaible HG, von Banchet GS, Boettger MK. et al . The role of proinflammatory cytokines in the generation and maintenance of joint pain.  Ann N Y Acad Sci. 2010;  1193 60-69
  • 5 Baerwald CG, Burmester GR, Krause A. Interactions of autonomic nervous, neuroendocrine, and immune systems in rheumatoid arthritis.  Rheum Dis Clin North Am. 2000;  26 841-857
  • 6 Busch-Dienstfertig M, Stein C. Opioid receptors and opioid peptide-producing leukocytes in inflammatory pain – Basic and therapeutic aspects.  Brain Behav Immun. 2009; 
  • 7 Zollner C, Shaqura MA, Bopaiah CP. et al . Painful inflammation-induced increase in mu-opioid receptor binding and G-protein coupling in primary afferent neurons.  Mol Pharmacol. 2003;  64 202-210
  • 8 Puehler W, Zollner C, Brack A. et al . Rapid upregulation of mu opioid receptor mRNA in dorsal root ganglia in response to peripheral inflammation depends on neuronal conduction.  Neuroscience. 2004;  129 473-479
  • 9 Hassan AH, Ableitner A, Stein C. et al . Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue.  Neuroscience. 1993;  55 185-195
  • 10 Puehler W, Rittner HL, Mousa SA. et al . Interleukin-1 beta contributes to the upregulation of kappa opioid receptor mrna in dorsal root ganglia in response to peripheral inflammation.  Neuroscience. 2006;  141 989-998
  • 11 Kraus J, Borner C, Giannini E. et al . Regulation of mu-opioid receptor gene transcription by interleukin-4 and influence of an allelic variation within a STAT6 transcription factor binding site.  J Biol Chem. 2001;  276 43901-43908
  • 12 Labuz D, Mousa SA, Schafer M. et al . Relative contribution of peripheral versus central opioid receptors to antinociception.  Brain Res. 2007;  1160 30-38
  • 13 Machelska H, Schopohl JK, Mousa SA. et al . Different mechanisms of intrinsic pain inhibition in early and late inflammation.  J Neuroimmunol. 2003;  141 30-39
  • 14 Stein C, Gramsch C, Herz A. Intrinsic mechanisms of antinociception in inflammation: local opioid receptors and beta-endorphin.  J Neurosci. 1990;  10 1292-1298
  • 15 Binder W, Mousa SA, Sitte N. et al . Sympathetic activation triggers endogenous opioid release and analgesia within peripheral inflamed tissue.  Eur J Neurosci. 2004;  20 92-100
  • 16 Labuz D, Berger S, Mousa SA. et al . Peripheral antinociceptive effects of exogenous and immune cell-derived endomorphins in prolonged inflammatory pain.  J Neurosci. 2006;  26 4350-4358
  • 17 Rittner HL, Labuz D, Richter JF. et al . CXCR1/2 ligands induce p38 MAPK-dependent translocation and release of opioid peptides from primary granules in vitro and in vivo.  Brain Behav Immun. 2007;  21 1021-1032
  • 18 Zöllner C, Mousa SA, Fischer O. et al . Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain.  J Clin Invest. 2008;  118 1065-1073
  • 19 Singer AJ, Clark RA. Cutaneous wound healing.  N Engl J Med. 1999;  341 738-746
  • 20 Machelska H, Stein C. Immune mechanisms in pain control.  Anesth Analg. 2002;  95 1002-1008, table of contents
  • 21 Cabot PJ, Carter L, Gaiddon C. et al . Immune cell-derived beta-endorphin. Production, release, and control of inflammatory pain in rats.  J Clin Invest. 1997;  100 142-148
  • 22 Cabot PJ, Carter L, Schafer M. et al . Methionine-enkephalin-and Dynorphin A-release from immune cells and control of inflammatory pain.  Pain. 2001;  93 207-212
  • 23 Rittner HL, Machelska H, Stein C. Immune system, pain and analgesia. In: Basbaum AI, Kaneko A, Shepherd GA, Westheimer G, eds. The senses: a comprehensive reference. 407–428 ed. San Diego: Academic Press; 2008
  • 24 Willer JC, Dehen H, Cambier J. Stress-induced analgesia in humans: endogenous opioids and naloxone-reversible depression of pain reflexes.  Science. 1981;  212 689-691
  • 25 Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry.  Annu Rev Neurosci. 1984;  7 309-338
  • 26 Mansour A, Fox CA, Akil H. et al . Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications.  Trends Neurosci. 1995;  18 22-29
  • 27 Mousa SA, Zhang Q, Sitte N. et al . beta-Endorphin-containing memory-cells and mu-opioid receptors undergo transport to peripheral inflamed tissue.  J Neuroimmunol. 2001;  115 71-78
  • 28 Przewlocki R, Hassan AH, Lason W. et al . Gene expression and localization of opioid peptides in immune cells of inflamed tissue: functional role in antinociception.  Neuroscience. 1992;  48 491-500
  • 29 Stein C, Pfluger M, Yassouridis A. et al . No tolerance to peripheral morphine analgesia in presence of opioid expression in inflamed synovia.  J Clin Invest. 1996;  98 793-799
  • 30 Stein C, Hassan AH, Lehrberger K. et al . Local analgesic effect of endogenous opioid peptides.  Lancet. 1993;  342 321-324
  • 31 Stein C, Millan MJ, Shippenberg TS. et al . Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors.  J Pharmacol Exp Ther. 1989;  248 1269-1275
  • 32 Zollner C, Stein C. Opioids.  Handb Exp Pharmacol. 2007;  31-63
  • 33 Baamonde A, Lastra A, Juarez L. et al . Effects of the local administration of selective mu-, delta-and kappa-opioid receptor agonists on osteosarcoma-induced hyperalgesia.  Naunyn Schmiedebergs Arch Pharmacol. 2005;  372 213-219
  • 34 Obara I, Makuch W, Spetea M. et al . Local peripheral antinociceptive effects of 14-O-methyloxymorphone derivatives in inflammatory and neuropathic pain in the rat.  Eur J Pharmacol. 2007;  558 60-67
  • 35 Rittner HL, Stein C. Involvement of cytokines, chemokines and adhesion molecules in opioid analgesia.  Eur J Pain. 2005;  9 109-112
  • 36 Sitte N, Busch M, Mousa SA. et al . Lymphocytes upregulate signal sequence-encoding proopiomelanocortin mRNA and beta-endorphin during painful inflammation in vivo.  J Neuroimmunol. 2007;  183 133-145
  • 37 Baamonde A, Lastra A, Juarez L. et al . Endogenous beta-endorphin induces thermal analgesia at the initial stages of a murine osteosarcoma.  Peptides. 2006;  27 2778-2785
  • 38 Machelska H, Cabot PJ, Mousa SA. et al . Pain control in inflammation governed by selectins.  Nat Med. 1998;  4 1425-1428
  • 39 Machelska H, Mousa SA, Brack A. et al . Opioid control of inflammatory pain regulated by intercellular adhesion molecule-1.  J Neurosci. 2002;  22 5588-5596
  • 40 Rittner HL, Labuz D, Schaefer M. et al . Pain control by CXCR2 ligands through Ca2+-regulated release of opioid peptides from polymorphonuclear cells.  FASEB J. 2006;  20 2627-2629
  • 41 Mousa SA, Bopaiah CP, Stein C. et al . Involvement of corticotropin-releasing hormone receptor subtypes 1 and 2 in peripheral opioid-mediated inhibition of inflammatory pain.  Pain. 2003;  106 297-307
  • 42 Cunha FQ, Ferreira SH. Peripheral hyperalgesic cytokines.  Adv Exp Med Biol. 2003;  521 22-39
  • 43 Oh SB, Tran PB, Gillard SE. et al . Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons.  J Neurosci. 2001;  21 5027-5035
  • 44 Tegeder I, Meier S, Burian M. et al . Peripheral opioid analgesia in experimental human pain models.  Brain. 2003;  126 1092-1102
  • 45 Craft RM, Henley SR, Haaseth RC. et al . Opioid antinociception in a rat model of visceral pain: systemic versus local drug administration.  J Pharmacol Exp Ther. 1995;  275 1535-1542
  • 46 Shannon HE, Lutz EA. Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats.  Neuropharmacology. 2002;  42 253-261
  • 47 Hanna MH, Elliott KM, Fung M. Randomized, double-blind study of the analgesic efficacy of morphine-6-glucuronide versus morphine sulfate for postoperative pain in major surgery.  Anesthesiology. 2005;  102 815-821
  • 48 Dahan A, van Dorp E, Smith T. et al . Morphine-6-glucuronide (M6G) for postoperative pain relief.  Eur J Pain. 2008;  12 403-411
  • 49 Furst S, Riba P, Friedmann T. et al . Peripheral versus central antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone in acute and inflammatory pain in the rat.  J Pharmacol Exp Ther. 2005;  312 609-618
  • 50 DeHaven-Hudkins DL, Dolle RE. Peripherally restricted opioid agonists as novel analgesic agents.  Curr Pharm Des. 2004;  10 743-757
  • 51 Riviere PJ. Peripheral kappa-opioid agonists for visceral pain.  Br J Pharmacol. 2004;  141 1331-1334
  • 52 Machelska H, Pfluger M, Weber W. et al . Peripheral effects of the kappa-opioid agonist EMD 61753 on pain and inflammation in rats and humans.  J Pharmacol Exp Ther. 1999;  290 354-361
  • 53 Tegeder I, Geisslinger G. Opioids as modulators of cell death and survival – unraveling mechanisms and revealing new indications.  Pharmacol Rev. 2004;  56 351-369
  • 54 Stein C, Lang LJ. Peripheral mechanisms of opioid analgesia.  Curr Opin Pharmacol. 2009;  9 3-8
  • 55 Polydefkis M, Griffin JW, McArthur J. New insights into diabetic polyneuropathy.  JAMA. 2003;  290 1371-1376
  • 56 Mata M, Glorioso JC, Fink DJ. Targeted gene delivery to the nervous system using herpes simplex virus vectors.  Physiol Behav. 2002;  77 483-488
  • 57 Pohl M, Meunier A. Experimental gene therapy of chronic pain.  Curr Opin Anaesthesiol. 2003;  16 547-551
  • 58 Beutler AS, Banck MS, Walsh CE. et al . Intrathecal gene transfer by adeno-associated virus for pain.  Curr Opin Mol Ther. 2005;  7 431-439
  • 59 Kyrkanides S, Fiorentino PM, Miller JN. et al . Amelioration of pain and histopathologic joint abnormalities in the Col1-IL-1beta(XAT) mouse model of arthritis by intraarticular induction of mu-opioid receptor into the temporomandibular joint.  Arthritis Rheum. 2007;  56 2038-2048

Korrespondenzadresse

Dr. Leonie Julia Lang

Campus Benjamin Franklin

Klinik für Anästhesiologie und

Operative Intensivmedizin

Hindenburgdamm 30

12200 Berlin

Phone: +49/308/445 3851

Fax: +49/844/53 826

Email: leonie.lang@charite.de

    >