Dtsch Med Wochenschr 2010; 135(39): 1918-1922
DOI: 10.1055/s-0030-1263339
Aktuelle Diagnostik & Therapie | Review article
Kardiologie, Radiologie
© Georg Thieme Verlag KG Stuttgart · New York

Die Rolle der Kardio-CT im klinischen Alltag – Update 2010

Role of cardiac CT-angiography in clinical routine – an update 2010S. Achenbach1
  • 1Medizinische Klinik 2, Universitätsklinikum Erlangen
Further Information

Publication History

eingereicht: 16.5.2010

akzeptiert: 26.8.2010

Publication Date:
21 September 2010 (online)

Zusammenfassung

Die Mehrzeilen-Computertomographie erlaubt bei Anwendung neuester Gerätetechnik, ausreichender Erfahrung und einer gewissen Selektion und Vorbereitung der Patienten die Darstellung des Herzens mit hoher Bildqualität. Wesentliches Anwendungsgebiet ist die Darstellung der Koronararterien. Koronarstenosen lassen sich mit hoher Sensitivität und Spezifität und insbesondere mit einem hohen negativ-prädiktiven Wert detektieren bzw. ausschließen. Sicherlich ist die CT-Koronarangiographie kein klinisches Verfahren, welches unkritisch bei allen Patienten angewendet oder gar zu „Screening”-Zwecken eingesetzt werden sollte. Vor allem aufgrund des hohen negativ prädiktiven Wertes kann sie jedoch – solange gewisse Voraussetzungen gegeben sind – zum sicheren Ausschluss von Koronarstenosen eingesetzt werden mit dem Ziel, eine ansonsten notwendige invasive Koronarangiographie zu vermeiden. Von geringerer klinischer Bedeutung ist der Koronarkalknachweis als Instrument zur Risikostratifikation und die Analyse von Morphologie und Funktion des Herzens. Die CT sollte für letzteres nur zum Zuge kommen, falls Standardverfahren wie Echokardiographie oder Magnetresonanztomographie nicht eingesetzt werden können oder keine ausreichende Bildqualität liefern. Korrekte Patientenselektion und ausreichende Expertise sind jedoch unbedingte Voraussetzungen für den erfolgreichen und sinnvollen klinischen Einsatz der kardialen Computertomographie.

Abstract

Multi Detector CT, the usage of adequate technology, suitable imaging protocols, sufficient experience and strict patient selection provided, allows visualization of the heart with high temporal and spatial resolution. The main application is coronary CT angiography. Coronary artery stenoses can be detected with high sensitivity and specificity. Especially the high negative predictive value is high, but care has to be taken to avoid false-positive results which occur especially when image quality is degraded. Coronary CT angiography should not be considered a widespread replacement of invasive coronary angiography or even a “screening” procedure, but it can be clinically useful to rule out coronary artery stenoses in selected patients. The detection of coronary artery calcification can be used for risk stratification purposes. Finally, CT also allows evaluation of cardiac morphology and function, but will be used for this only when other modalities, such as echocardiography and MR imaging, have failed or are not applicable.

Literatur

  • 1 Abbara S, Arbab-Zadeh A, Callister T Q, Desai M Y, Mamuya W, Thomson L, Weigold W G. SCCT guidelines for performance of coronary computed tomographic angiography.  J Cardiovasc Comput Tomogr. 2009;  3 190-204
  • 2 Abdulla J, Abildstrom S Z, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C. 64-multislice detection computed tomography coronary angiography as a potential alternative to conventional coronary angiography.  Eur Heart J. 2007;  28 3042-3050
  • 3 Abdulla J, Sivertsen J, Kofoed K F. et al . Evaluation of aortic valve stenosis by cardiac multislice computed tomography compared with echocardiography.  J Heart Valve Dis. 2009;  18 634-643
  • 4 Achenbach S, Marwan M, Ropers D. et al . Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively ECG-triggered high-pitch spiral acquisition.  Eur Heart J. 2010;  31 340-346
  • 5 American Cancer Society .Cancer Facts & Figures 2010. http://www.cancer.org/Research/CancerFactsFigures/index (4.8.2010)
  • 6 Arad Y, Goodman K J, Roth M. et al . Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study.  J Am Coll Cardiol. 2005;  46 158-165
  • 7 Arad Y, Spadaro L A. et al . Prediction of coronary events with electron beam computed tomography.  J Am Coll Cardiol. 2000;  36 1253-1258
  • 8 Becker A, Leber A, Becker C, Knez A. Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals.  Am Heart J. 2008;  155 154-160
  • 9 Brenner D J, Doll R, Goodhead D T. et al . Cancer risks attributable to low doses of ionizing radiation.  Proc Nat Acad Sci USA. 2003;  100 13761-13766
  • 10 Danciu S C, Herrera C J, Stecy P J, Carell E, Saltiel F, Hines J L. Usefulness of multislice computed tomographic coronary angiography to identify patients with abnormal myocardial perfusion stress in whom diagnostic catheteriation may be safely avoided.  Am J Cardiol. 2007;  199 1605-1608
  • 11 Delgado V, Ng A C. et al . Transcatheter aortic valve implantation: role of multi-detector row computed tomography to evaluate prosthesis positioning and deployment in relation to valve function.  Eur Heart J. 2010;  31 1114-1123
  • 12 Detrano R, Guerci A D. et al . Coronary calcium as a predictor of coronary events in four racial or ethnic groups.  N Engl J Med. 2008;  358 1336-1345
  • 13 Dewey M, Vavere A L, Arbab-Zadeh A. et al . Patient characteristics as predictors of image quality and diagnostic accuracy of MDCT compared with conventional coronary angiography for detecting coronary artery stenoses.  Am J Roentgenol. 2010;  194 93-102
  • 14 Earls J P, Berman E L, Urban B A. et al . Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose.  Radiology. 2008;  246 742-53
  • 15 Folsom A R, Kronmal R A, Detrano R C. et al . Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence.  Arch Intern Med. 2008;  168 1333-1339
  • 16 Gerber T C, Carr J J, Arai A E. et al . Ionizing radiation in cardiac imaging.  Circulation. 2009;  119 1056-1065
  • 17 Gilard M, Le Gal G, Cornily J C. et al . Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomography findings.  Arch Intern Med. 2007;  165 1686-1689
  • 18 Goldstein J A, Gallagher M J, O’Neill W W, Ross M A, O’Neil B J, Raff G L. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain.  J Am Coll Cardiol. 2007;  49 863-871
  • 19 Gopalakrishnan P, Wolson G T, Tak K. Accuracy of multislice computed tomography coronary angiography.  Cardiol Rev. 2008;  16 189-196
  • 20 Greenland P, LaBree L, Azen S P. et al . Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals.  JAMA. 2004;  291 210-215
  • 21 Hadamitzky M. et al . Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease.  JACC Cardiovasc Imaging. 2009;  2 404-411
  • 22 Hamon M, Lepage O, Malagutti P. et al . Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography.  Radiology. 2007;  245 720-731
  • 23 Hausleiter J, Meyer T, Hermann F. et al . Estimated radiation dose associated with cardiac CT angiography.  JAMA. 2009;  301 500-507
  • 24 Hendel R C, Patel M R, Cramer C M. et al . ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging.  J Am Coll Cardiol. 2006;  48 1475-1497
  • 25 Hirai N, Horiguchi J, Fujioka C. et al . Prospective versus retrospective ECG-gated 64-detector coronary CT angiography.  Radiology. 2008;  248 424-430
  • 26 Hollander J E, Chang A M, Shofer F S. et al . One-year outcomes following coronary computerized tomographic angiography for evaluation of emergency department patients with potential acute coronary syndrome.  Acad Emerg Med. 2009;  16 693-698
  • 27 Kreisz F P, Merlin T, Moss J, Atherton J, Hiller J E, Gericke C A. The pre-test risk stratified cost-effectiveness of 64-slice computed tomography coronary angiography in the detection of significant obstructive coronary artery disease in patients otherwise referred to invasive coronary angiography.  Heart Lung Circ. 2009;  18 200-207
  • 28 Martinek M, Nesser H J, Aichinger J, Boehm G, Purerfellner H. Impact of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping on clinical outcomes, safety, and efficacy using radiofrequency ablation for atrial fibrillation.  Pacing Clin Electrophysiol. 2007;  30 1215-1223
  • 29 Min J K, Gilmore A, Budoff M J, Berman D S, O’Day K. Cost-effectiveness of coronary CT angiography versus myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease.  Radiology. 2010;  254 801-808
  • 30 Min J K, Shaw L J, Devereux R B. et al . Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality.  J Am Coll Cardiol. 2007;  50 1161-1170
  • 31 Mowatt G, Cook J A, Hillis G S, Walker S, Fraser C, Jia X, Waugh N. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease.  Heart. 2008;  94 1386-1393
  • 32 Ostrom M P, Gopal A, Ahmadi N. et al . Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography.  J Am Coll Cardiol. 2008;  52 1335-1343
  • 33 Raggi P, Callister T Q, Cooil B. et al . Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography.  Circulation. 2000;  101 850-855
  • 34 Rubinshtein R, Halon D A, Gaspar T. et al . Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin.  Circulation. 2007;  115 1762-1768
  • 35 Scheffel H, Alkadhi H, Leschka S. et al . Low-dose CT coronary angiography in the step-and-shoot mode.  Heart. 2008;  94 1132-1137
  • 36 Shaw L J, Achenbach S, Chandrashekhar Y. et al . Imaging modalities and radiation: benefit has its risks.  JACC Cardiovasc Imaging. 2010;  3 550-552
  • 37 Smith-Bindman R, Lipson J, Marcus R. et al . Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer.  Arch Int Med. 2009;  169 2078-2086
  • 38 Taylor A J, Bindeman J, Feuerstein I. et al . Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors.  J Am Coll Cardiol. 2005;  46 807-814
  • 39 Vanhoenacker P K, Heijenbrok-Kal M H, Van Heste R. et al . Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease.  Radiology. 2007;  244 419-428
  • 40 Vliegenthart R, Oudkerk M, Song B. et al . Coronary calcification detected by electron-beam computed tomography and myocardial infarction. The Rotterdam Coronary Calcification Study.  Eur Heart J. 2002;  23 1596-1603
  • 41 Wykrzykowska J J, Arbab-Zadeh A, Godoy G. et al . Assessment of in-stent restenosis using 64-MDCT.  AJR Am J Roentgenol. 2010;  194 85-92

Prof. Dr. med. Stephan Achenbach

Medizinische Klinik 2
Universitätsklinikum Erlangen

Ulmenweg 18

91054 Erlangen

Phone: 09131/8535-000

Fax: 09131/8535-303

Email: stephan.achenbach@uk-erlangen.de

    >