Horm Metab Res 2011; 43(1): 43-47
DOI: 10.1055/s-0030-1265220
Animals

© Georg Thieme Verlag KG Stuttgart · New York

Glycerol-3-phosphate Dehydrogenase Expression and Oxygen Consumption in Liver Mitochondria of Female and Male Rats with Chronic Alteration of Thyroid Status

H. Rauchová1 , 2 , T. Mráček1 , 3 , P. Novák1 , M. Vokurková1 , 2 , T. Soukup1
  • 1Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
  • 2Center for Cardiovascular Research, Prague, Czech Republic
  • 3Center for Applied Genomics, Prague, Czech Republic
Further Information

Publication History

received 01.07.2010

accepted 23.08.2010

Publication Date:
30 September 2010 (online)

Abstract

In our chronic experiments (over several months), the activity and protein amount of glycerol-3-phosphate dehydrogenase (GPDH) in mitochondria isolated from the liver of adult male and female inbred Lewis strain euthyroid (EU), hyperthyroid (TH), and hypothyroid (HY) rats were analyzed by biochemical and Western blot methods. The TH status was induced by intraperitoneal injections of 3,3′,5-triiodo-L-thyronine and the HY status with 0.05% solution of methimazole in drinking water. The TH status led to a significant increase and the HY status to a significant decrease of enzyme activity and protein amount in both male and female animals. These changes were, however, more pronounced in females. The EU and TH female rats also showed a significantly higher activity and the TH female rats showed also a significantly higher enzyme amount in comparison with males, while the HY rats showed low levels in both sexes. The glycerol-3-phosphate-dependent oxygen consumption of freshly isolated rat liver mitochondria from the TH animals was higher in comparison with the EU animals and it was activated by idebenone, a synthetic analogue of coenzyme Q, in both the EU and TH rats. Measurements of serum thyroid hormone levels and analysis of anatomical parameters (relative heart and thyroid gland weights) confirmed that our procedures inducing the TH and HY states are efficient and reliable and that determination of GPDH can serve as an additional criterion for the evaluation of the thyroid hormone status.

References

  • 1 Hulbert AJ. Thyroid hormones and their effects: a new perspective.  Biol Rev. 2000;  75 519-631
  • 2 Harper ME, Seifert EL. Thyroid hormones effects on mitochondrial energetics.  Thyroid. 2008;  18 145-156
  • 3 Lee YP, Takemori AE, Lardy H. Enhanced oxidation of α-glycerophosphate by mitochondria of thyroid-fed rats.  J Biol Chem. 1959;  234 3051-3054
  • 4 Lardy HA, Lee YP, Takemori A. Enzyme responses to thyroid hormones.  Ann NY Acad Sci. 1960;  86 506-511
  • 5 Lee YP, Lardy HA. Influence of thyroid hormones on l-α-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat.  J Biol Chem. 1965;  240 1427-1436
  • 6 Sellinger OZ, Lee KL, Fesler KW. The induction of mitochondrial α-glycerophosphate dehydrogenase by thyroid hormone: Effects of adrenalectomy, thyroidectomy and cortisone administration.  Biochim Biophys Acta. 1966;  124 289-294
  • 7 Costante G, Crupi D, Catalfamo R, Trimarchi F. Stimulation of liver mitochondrial α-glycerophosphate dehydrogenase activity by l-thyroxine in thyroidectomized rats: comparison with the suppression of pituitary TSH secretion.  J Endocrinol Invest. 1990;  13 61-64
  • 8 Oliveira E, Fagundes ATS, Alves SB, Pazos-Moura CC, Moura EG, Passos MCF, Lisboa CP. Chronic leptin treatment inhibits liver mitochondrial α-glycerol-β-phosphate dehydrogenase in euthyroid rats.  Horm Metab Res. 2007;  39 867-870
  • 9 Moura EG, Santos RS, Lisboa CP, Alves SB, Bonomo IT, Fagundes AT, Oliveira E, Passos MC. Thyroid function and body weight programming by neonatal hyperthyroidism in rats – the role of leptin and deiodase activities.  Horm Metab Res. 2008;  40 1-7
  • 10 Oppenheimer JH, Silva E, Schwartz HL, Surks ML. Stimulation of hepatic mitochondrial α-glycerophosphate dehydrogenase and malic enzyme by l-triiodothyronine. Characteristics of the response with specific nuclear thyroid hormone binding sites fully saturated.  J Clin Invest. 1977;  59 517-527
  • 11 Jolin T. Response of hepatic mitochondrial α-glycerophosphate dehydrogenase and malic enzyme to 3,5,3′-triiodothyronine in streptozotocin-diabetic rats.  Endocrinology. 1988;  123 248-257
  • 12 Mráček T, Ješina P, Křiváková P, Bolehovská R, červinková Z, Drahota Z, Houštěk J. Time-course of hormone induction of mitochondrial glycerophosphate dehydrogenase biogenesis in rat liver.  Biochim Biophys Acta. 2005;  1726 217-223
  • 13 Rauchová H, Zachařová G, Soukup T. Influence of chronically altered thyroid status on the activity of liver mitochondrial glycerol-3-phosphate dehydrogenase in female inbred Lewis rats.  Horm Metab Res. 2004;  36 286-290
  • 14 Ruegamer WR, Westerfeld WW, Richert DA. α-Glycerophosphate dehydrogenase response to thyroxine in thyroidectomized, thiouracil-fed and temperature-adapted rats.  Endocrinology. 1964;  75 908-916
  • 15 Okamura K, Taurog A, Krulich L. Hypothyroidism in severely iodine deficient rats.  Endocrinology. 1981;  109 464-468
  • 16 Dümmler K, Müller S, Seitz HJ. Regulation of adenine nucleotide translocase and glycerol-3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues.  Biochem J. 1996;  317 913-918
  • 17 Soukup T, Jirmanová I. Regulation of myosin expression in developing and regenerating extrafusal and intrafusal muscle fibres with special emphasis on the role of thyroid hormones.  Physiol Res. 2000;  49 617-633
  • 18 Johnson D, Lardy H. Isolation of liver and kidney mitochondria. In: Estabrook RW, Pullman ME, (eds) Methods in Enzymology 10, Oxidation and Phosphorylation. New York, London: Academic Press; 1967: 94-96
  • 19 Lowry OH, Rosebrough JN, Farr AL, Randall RJ. Protein measurement with the Folin-phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 20 Schagger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.  Anal Biochem. 1987;  166 368-379
  • 21 Ueda K, Tanizawa Y, Ishihara H, Kizuki N, Ohta Y, Matsutani A, Oka Y. Overexpression of mitochondrial FAD-linked glycerol-3-phosphate dehydrogenase does not correct glucose-stimulated insulin secretion from diabetic GK rat pancreatic islets.  Diabetologia. 1998;  41 649-653
  • 22 Coleoni AH, Cherubini O. Sex-related differences in the activity of liver mitochondrial α-glycerophosphate dehydrogenase in the rat.  Acta Physiol Pharmacol Latinoam. 1989;  39 245-253
  • 23 Alfadda A, DosSantos RA, Stepanyan Z, Marrif H, Silva JE. Mice with deletion of the mitochondrial glycerol-3-phosphate dehydrogenase gene exhibit a thrifty phenotype: effect of gender.  Am J Physiol Regul Integr Comp Physiol. 2004;  287 R147-R156
  • 24 Límanová Z. The thyroid gland-running the show behind the scenes (In Czech).  Cas Lek Ces. 2009;  148 83-85
  • 25 Sellinger OZ, Lee KL. The induction of mitochondrial α-glycerophosphate dehydrogenase by thyroid hormone: Evidence for enzyme synthesis.  Biochim Biophys Acta. 1964;  91 183-186
  • 26 Müller S, Seitz HJ. Cloning of cDNA for the FAD-linked glycerol-3-phosphate dehydrogenase from rat liver and its regulation by thyroid hormones.  Proc Natl Acad Sci USA. 1994;  91 10581-10585
  • 27 Rauchová H, Drahota Z, Bergamini C, Fato R, Lenaz G. Modification of respiratory-chain activities in brown adipose tissue mitochondria by idebenone (hydroxydecyl-ubiquinone).  J Bioenerg Biomembr. 2008;  40 85-83
  • 28 Soukup T, Zachařová G, Smerdu V, Jirmanová I. Body, heart, thyroid gland and skeletal muscle weight changes in rats with altered thyroid status.  Physiol Res. 2001;  50 619-626

Correspondence

H. Rauchová

Institute of Physiology, v.v.i.

Academy of Sciences of the

Czech Republic

Vídeňská 1083

42220 Prague 4

Czech Republic

Phone: +420/2/4106 2432

Fax: +420/2/4106 2488

Email: rauchova@biomed.cas.cz

    >