Zusammenfassung
Die Bedeutung und Anwendung bildgebender Verfahren in der Rheumatologie, insbesondere
bei der Diagnostik entzündlicher Gelenk- und Wirbelsäulenerkrankungen, hat sich in
den letzten Jahrzehnten signifikant geändert. Diente die konventionelle Radiologie
bislang ausschließlich der Diagnostik und der Absicherung von Klassifikationskriterien,
so stellen radiologische Strukturveränderungen heutzutage einen wesentlichen Outcome-Parameter
und Endpunkt für klinische Studien dar. Neben dem Erreichen der klinischen Remission
gilt inzwischen auch das Therapieziel, den radiologischen Progress zu stoppen. Ein
Aufhalten der radiologischen Progression bedeutet Verbesserung der Funktionalität,
der Lebensqualität, respektive eine Reduzierung von Arbeitsunfähigkeit und nicht zuletzt
somit eine signifikante Reduktion von Kosten. Neue bildgebende Verfahren wie die Magnetresonanztomografie
(MRT) setzen genau an dieser Entwicklung an und haben einen Paradigmenwechsel der
Diagnostik eingeleitet. Mit der MRT können heutzutage knöcherne Veränderungen (z. B.
Erosion) frühzeitiger im Krankheitsverlauf detektiert werden, desweiteren sind auch
entzündliche Weichteilveränderungen (z. B. Synovialitis) als auch Knorpelpathologien
(z. B. durch dGEMRIC-Technik) diagnostizierbar. Ausschließlich mit der MRT gelingt
es ferner das Knochenmarködem (Osteitis) als frühe Entzündungsreaktion abzubilden,
welches als Prädiktor für Erosivität im Gelenk, als auch für die Knochenneubildung
(z. B. Syndesmophyten) an der Wirbelsäule gilt. Aufgrund dieser Vorteile ist der Einschluss
der MRT als Diagnosekriterium (wie z. B. für die ankylosierende Spondylitis (AS) bei
den ASAS-Kriterien bereits stattgefunden) die logische Konsequenz. Bildgebende Techniken
wie die MRT finden aber auch zunehmend Bedeutung bei der Therapiekontrolle, da sie
ein genaueres und individuelleres Monitoring des Krankheitsverlaufes erlauben. Technischen
Weiterentwicklungen der MRT (z. B. Niederfeld-MRT), sowie die mittlerweile vereinfachte
und standardisierte Befundinterpretation durch Scoringmethoden haben inzwischen zu
einer breiteren Anwendung der MRT, respektive zu neuen Indikationen in Klinik und
Praxis geführt.
Abstract
The relevance and use of imaging methods in rheumatology have significantly changed
in recent decades, especially with regard to the diagnosis of inflammatory joint and
spinal diseases. Nowadays, structural changes in X-ray images are significant outcome
parameters and endpoints for clinical studies, whereas conventional radiology so far
solely served as a diagnostic tool and to ensure classification criteria. Besides
achieving clinical remission, the therapeutic goal is to stop radiological progression.
Stopping radiological progression means functional improvement, quality of life improvement,
reduction of inability to work, and, last not least, a significant reduction of costs.
Novel imaging methods like the magnetic resonance imaging (MRI) follow this trend
and have led to a paradigm shift in diagnosis. Using MRI we can detect bony changes,
e. g., erosions, inflammatory soft tissue changes, e. g., synovitis, and cartilage
pathologies (e. g., by the dGEMRIC method) much earlier during the course of a disease.
Only MRI is able to show marrow oedema (osteitis), which is an early sign for inflammation
and a predictor for erosivity in the joint, as well as new bone formation at the spine,
e. g., syndesmophytes. The implementation of MRI findings as a new parameter for classification
criteria is the logical consequence of these advantages [as it has already been performed
for ankylosing spondylitis (AS) in the ASAS criteria]. Imaging methods like MRI are
becoming increasingly important in therapy control, since they allow for a more detailed
and more individual monitoring of the disease course. Technical advancements of MRI
like the low-field MRI and the simplified and standardised interpretation of findings
with scoring methods have led to an expanded use of MRI as well as to new indications
in clinic and practice.
Schlüsselwörter
Magnetresonanztomografie - Rheumatologie - Frühdiagnostik - Prognose - Therapiekontrolle
Key words
magnetic resonance imaging - rheumatology - early diagnosis - prognosis - therapy
monitoring
Literatur
- 1
Braun J, Rudwaleit M, Hermann KG. et al .
Imaging in ankylosing spondylitis.
Z Rheumatol.
2007;
66
167-178
- 2
Althoff CE, Appel H, Rudwaleit M. et al .
Whole-body MRI as a new screening tool for detecting axial and peripheral manifestations
of spondyloarthritis.
Ann Rheum Dis.
2007;
66
983-985
- 3
Ostendorf B, Edelmann E, Kellner H. et al .
Low-field magnetic resonance imaging for rheumatoid arthritis.
Z Rheumatol.
2010;
69
79-86
- 4
Ejbjerg BJ, Narvestad E, Jacobsen S. et al .
Optimised, low cost, low field dedicated extremity MRI is highly specific and sensitive
for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: comparison
with conventional high field MRI and radiography.
Ann Rheum Dis.
2005;
64
1280-1287
- 5
Ostendorf B, Scherer A, Backhaus M. et al .
Imaging techniques in rheumatology: magnetic resonance imaging in rheumatoid arthritis.
Z Rheumatol.
2003;
62
274-286
- 6
Zikou AK, Argyropoulou MI, Alamanos Y. et al .
Magnetic resonance imaging findings of the cervical spine in patients with rheumatoid
arthritis. A cross-sectional study.
Clin Exp Rheumatol.
2005;
23
665-670
- 7
Ostendorf B, Scherer A, Kellner H. et al .
Project REMISSION(PLUS): clinical and radiological remission : new treatment goals
in the management of rheumatoid arthritis.
Z Rheumatol.
2008;
67
707-710
712-705
- 8
Sieper J, Rudwaleit M, Baraliakos X. et al .
The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide
to assess spondyloarthritis.
Ann Rheum Dis.
2009;
68
(Suppl. 2)
ii1-ii44
- 9
Ostergaard M, Hansen M, Stoltenberg M. et al .
Magnetic resonance imaging-determined synovial membrane volume as a marker of disease
activity and a predictor of progressive joint destruction in the wrists of patients
with rheumatoid arthritis.
Arthritis Rheum.
1999;
42
918-929
- 10
Ostendorf B, Scherer A, Modder U. et al .
Diagnostic value of magnetic resonance imaging of the forefeet in early rheumatoid
arthritis when findings on imaging of the metacarpophalangeal joints of the hands
remain normal.
Arthritis Rheum.
2004;
50
2094-2102
- 11
McQueen FM, Stewart N, Crabbe J. et al .
Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high
prevalence of erosions at four months after symptom onset.
Ann Rheum Dis.
1998;
57
350-356
- 12
Dohn UM, Ejbjerg BJ, Hasselquist M. et al .
Detection of bone erosions in rheumatoid arthritis wrist joints with magnetic resonance
imaging, computed tomography and radiography.
Arthritis Res Ther.
2008;
10
R25
- 13
Duer-Jensen A, Vestergaard A, Dohn UM. et al .
Detection of rheumatoid arthritis bone erosions by two different dedicated extremity
MRI units and conventional radiography.
Ann Rheum Dis.
2008;
67
998-1003
- 14
Totterman SM.
Magnetic resonance imaging of psoriatic arthritis: insight from traditional and three-dimensional
analysis.
Curr Rheumatol Rep.
2004;
6
317-321
- 15
Blum U, Buitrago-Tellez C, Mundinger A. et al .
Magnetic resonance imaging (MRI) for detection of active sacroiliitis – a prospective
study comparing conventional radiography, scintigraphy, and contrast enhanced MRI.
J Rheumatol.
1996;
23
2107-2115
- 16
McQueen FM, Ostendorf B.
What is MRI bone oedema in rheumatoid arthritis and why does it matter?.
Arthritis Res Ther.
2006;
8
222
- 17
McQueen FM, Gao A, Ostergaard M. et al .
High-grade MRI bone oedema is common within the surgical field in rheumatoid arthritis
patients undergoing joint replacement and is associated with osteitis in subchondral
bone.
Ann Rheum Dis.
2007;
66
1581-1587
- 18
Haavardsholm EA, Boyesen P, Ostergaard M. et al .
Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis:
bone marrow oedema predicts erosive progression.
Ann Rheum Dis.
2008;
67
794-800
- 19
Tamai M, Kawakami A, Uetani M. et al .
The presence of anti-cyclic citrullinated peptide antibody is associated with magnetic
resonance imaging detection of bone marrow oedema in early stage rheumatoid arthritis.
Ann Rheum Dis.
2006;
65
133-134
- 20
Suppiah R, Doyle A, Rai R. et al .
Quantifying bone marrow edema in the rheumatoid cervical spine using magnetic resonance
imaging.
J Rheumatol.
2010;
37
1626-1632
- 21
Braun J, Bollow M, Remlinger G. et al .
Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors.
Arthritis Rheum.
1998;
41
58-67
- 22
Oostveen J, Prevo R, den Boer J. et al .
Early detection of sacroiliitis on magnetic resonance imaging and subsequent development
of sacroiliitis on plain radiography. A prospective, longitudinal study.
J Rheumatol.
1999;
26
1953-1958
- 23
Maksymowych WP, Chiowchanwisawakit P, Clare T. et al .
Inflammatory lesions of the spine on magnetic resonance imaging predict the development
of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between
inflammation and new bone formation.
Arthritis Rheum.
2009;
60
93-102
- 24
Michaely HJ, Thomsen HS, Reiser MF. et al .
Nephrogenic systemic fibrosis (NSF) – implications for radiology.
Radiologe.
2007;
47
785-793
- 25
Hodgson RJ, O’Connor P, Moots R.
MRI of rheumatoid arthritis image quantitation for the assessment of disease activity,
progression and response to therapy.
Rheumatology (Oxford).
2008;
47
13-21
- 26
Brown AK, Quinn MA, Karim Z. et al .
Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying
antirheumatic drug-induced clinical remission: evidence from an imaging study may
explain structural progression.
Arthritis Rheum.
2006;
54
3761-3773
- 27
Syversen SW, Haavardsholm EA, Boyesen P. et al .
Biomarkers in early rheumatoid arthritis: longitudinal associations with inflammation
and joint destruction measured by magnetic resonance imaging and conventional radiographs.
Ann Rheum Dis.
2010;
69
845-850
- 28
McQueen F, Clarke A, McHaffie A. et al .
Assessment of cartilage loss at the wrist in rheumatoid arthritis using a new MRI
scoring system.
Ann Rheum Dis.
2010;
Suppl. (EULAR)
- 29
Braun J, Baraliakos X, Golder W. et al .
Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis,
before and after successful therapy with infliximab: evaluation of a new scoring system.
Arthritis Rheum.
2003;
48
1126-1136
- 30
Hodgson R, Grainger A, O’Connor P. et al .
Dynamic contrast enhanced MRI of bone marrow oedema in rheumatoid arthritis.
Ann Rheum Dis.
2008;
67
270-272
- 31
Ostergaard M, Peterfy C, Conaghan P. et al .
OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions,
joint pathology definitions, and the OMERACT RA-MRI scoring system.
J Rheumatol.
2003;
30
1385-1386
- 32
Bird P, Conaghan P, Ejbjerg B. et al .
The development of the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas.
Ann Rheum Dis.
2005;
64
(S 01)
i8-i10
- 33
Ostergaard M, McQueen F, Wiell C. et al .
The OMERACT psoriatic arthritis magnetic resonance imaging scoring system (PsAMRIS):
definitions of key pathologies, suggested MRI sequences, and preliminary scoring system
for PsA Hands.
J Rheumatol.
2009;
36
1816-1824
- 34
van der Heijde DM, Landewe RB, Hermann KG. et al .
Application of the OMERACT filter to scoring methods for magnetic resonance imaging
of the sacroiliac joints and the spine. Recommendations for a research agenda at OMERACT
7.
J Rheumatol.
2005;
32
2042-2047
- 35
Bashir A, Gray ML, Burstein D.
Gd-DTPA2 as a measure of cartilage degradation.
Magn Reson Med.
1996;
36
665-673
- 36
Fleming BC, Oksendahl HL, Mehan WA. et al .
Delayed Gadolinium-Enhanced MR Imaging of Cartilage (dGEMRIC) following ACL injury.
Osteoarthritis Cartilage.
2010;
18
662-667
- 37
Williams A, Shetty SK, Burstein D. et al .
Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the first carpometacarpal
(1CMC) joint: a feasibility study.
Osteoarthritis Cartilage.
2008;
16
530-532
- 38
Miese FR, Ostendorf B, Wittsack H-J. et al .
Metacarpophalangeal Joints in Rheumatoid Arthritis: Delayed Gadolinium-enhanced MR
Imaging of Cartilage – A Feasibility Study.
Radiology.
2010;
(epub ahead of print)
- 39
Ostergaard M, Lorenzen I, Henriksen O.
Dynamic gadolinium-enhanced MR imaging in active and inactive immunoinflammatory gonarthritis.
Acta Radiol.
1994;
35
275-281
- 40
Boss A, Martirosian P, Fritz J. et al .
Magnetic resonance spin-labeling perfusion imaging of synovitis in inflammatory arthritis
at 3.0 T.
MAGMA.
2009;
22
175-180
- 41
Vasanth LC, Foo LF, Potter HG. et al .
Using magnetic resonance angiography to measure abnormal synovial blood vessels in
early inflammatory arthritis: a new imaging biomarker?.
J Rheumatol.
2010;
37
1129-1135
- 42
Sandrock D, Backhaus M, Burmester G. et al .
Imaging techniques in rheumatology: scintigraphy in rheumatoid arthritis.
Z Rheumatol.
2003;
62
476-480
- 43
Sandrock D, Backhaus M.
Imaging techniques in rheumatology: PET in rheumatology.
Z Rheumatol.
2010;
69
359-364
- 44
Ostendorf B, Mattes-Gyorgy K, Reichelt DC. et al .
Early detection of bony alterations in rheumatoid and erosive arthritis of finger
joints with high-resolution single photon emission computed tomography, and differentiation
between them.
Skeletal Radiol.
2010;
39
55-61
- 45
Beckers C, Jeukens X, Ribbens C. et al .
(18)F-FDG PET imaging of rheumatoid knee synovitis correlates with dynamic magnetic
resonance and sonographic assessments as well as with the serum level of metalloproteinase-3.
Eur J Nucl Med Mol Imaging.
2006;
33
275-280
Korrespondenzadresse
PD Dr. Benedikt Ostendorf
Heinrich-Heine Universität
Düsseldorf
Klinik für Endokrinologie
Diabetologie und Rheumatologie
Moorenstraße 5
40025 Düsseldorf
Telefon: +49/211/811 7817
Fax: +49/211/811 6455
eMail: ostendorf@med.uni-duesseldorf.de