Abstract
Insulin analogues provide clinically important benefits for people with diabetes,
including more predictable action profiles and lower risk of hypoglycemia compared
with human insulin. However, it has been suggested that certain insulin analogues
may lead to greater activation of insulin-like growth factor-1 (IGF-1) signaling,
with risk for adverse mitogenic effects. This article aims to critically review studies
on the mitogenic effects of the insulin analogue insulin glargine (glargine) and its
metabolites. A review of in vitro studies suggests that glargine may stimulate mitogenic
activity in some cell lines at supraphysiological concentrations (nanomolar/micromolar
concentrations). Mitogenicity appeared to be related to the expression of the IGF-1
receptor, being present in cells expressing high levels of the receptor and absent
in cells with limited or no IGF-1 receptor expression. In animal studies, glargine
did not promote tumor growth, despite administration at supraphysiological concentrations
(nanomolar/micromolar), which are unlikely to be observed in clinical practice because
the doses needed to produce these concentrations are liable to lead to hypoglycemia.
Furthermore, glargine in vivo is rapidly transformed into its metabolites, the metabolic
and mitogenic characteristics of which have been shown to be broadly equal to those
of human insulin. Thus, the suggestion of increased relative mitogenic potency of
insulin glargine seen in some cell lines does not appear to carry over to the in vivo
situation in animals and humans.
Key words
insulin - insulin analogues - insulin-like growth factor-1 - mitogenicity
References
1
Colhoun HM.
Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish
Diabetes Research Network Epidemiology Group.
Diabetologia.
2009;
52
1755-1765
2
Currie CJ, Poole CD, Gale EA.
The influence of glucose-lowering therapies on cancer risk in type 2 diabetes.
Diabetologia.
2009;
52
1766-1777
3
Hemkens LG, Grouven U, Bender R, Gunster C, Gutschmidt S, Selke GW, Sawicki PT.
Risk of malignancies in patients with diabetes treated with human insulin or insulin
analogues: a cohort study.
Diabetologia.
2009;
52
1732-1744
4
Jonasson JM, Ljung R, Talback M, Haglund B, Gudbjornsdottir S, Steineck G.
Insulin glargine use and short-term incidence of malignancies-a population-based follow-up
study in Sweden.
Diabetologia.
2009;
52
1745-1754
5
Smith U, Gale EA.
Does diabetes therapy influence the risk of cancer?.
Diabetologia.
2009;
52
1699-1708
6
Ebeling P, Tuominen JA, Koivisto VA.
Insulin analogues and carcinoma of the breast.
Diabetologia.
1996;
39
124-125
7
Milazzo G, Sciacca L, Papa V, Goldfine ID, Vigneri R.
ASPB10 insulin induction of increased mitogenic responses and phenotypic changes in
human breast epithelial cells: evidence for enhanced interactions with the insulin-like
growth factor-I receptor.
Mol Carcinog.
1997;
18
19-25
8
De Meyts P, Whittaker J.
Structural biology of insulin and IGF1 receptors: implications for drug design.
Nat Rev Drug Discov.
2002;
1
769-783
9
Kristensen C, Wiberg FC, Andersen AS.
Specificity of insulin and insulin-like growth factor I receptors investigated using
chimeric mini-receptors. Role of C-terminal of receptor alpha subunit.
J Biol Chem.
1999;
274
37351-37356
10
Sciacca L, Costantino A, Pandini G, Mineo R, Frasca F, Scalia P, Sbraccia P, Goldfine ID,
Vigneri R, Belfiore A.
Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine
mechanism.
Oncogene.
1999;
18
2471-2479
11
Vella V, Pandini G, Sciacca L, Mineo R, Vigneri R, Pezzino V, Belfiore A.
A novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates
growth of thyroid cancer.
J Clin Endocrinol Metab.
2002;
87
245-254
12
Sciacca L, Mineo R, Pandini G, Murabito A, Vigneri R, Belfiore A.
In IGF-I receptor-deficient leiomyosarcoma cells autocrine IGF-II induces cell invasion
and protection from apoptosis via the insulin receptor isoform A.
Oncogene.
2002;
21
8240-8250
13
Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine ID, Belfiore A,
Vigneri R.
Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth
factor II receptor in fetal and cancer cells.
Mol Cell Biol.
1999;
19
3278-3288
14
Chisalita SI, Arnqvist HJ.
Insulin-like growth factor I receptors are more abundant than insulin receptors in
human micro- and macrovascular endothelial cells.
Am J Physiol Endocrinol Metab.
2004;
286
E896-E901
15
Belfiore A.
The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human
cancer.
Curr Pharm Des.
2007;
13
671-686
16
Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T,
Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y.
Insulin-like growth factor I receptor primary structure: comparison with insulin receptor
suggests structural determinants that define functional specificity.
Embo J.
1986;
5
2503-2512
17
LeRoith D, Yakar S.
Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth
factor 1.
Nat Clin Pract Endocrinol Metab.
2007;
3
302-310
18
Chisalita SI, Nitert MD, Arnqvist HJ.
Characterisation of receptors for IGF-I and insulin; evidence for hybrid insulin/IGF-I
receptor in human coronary artery endothelial cells.
Growth Horm IGF Res.
2006;
16
258-266
19
Slieker LJ, Brooke GS, DiMarchi RD, Flora DB, Green LK, Hoffmann JA, Long HB, Fan L,
Shields JE, Sundell KL, Surface PL, Chance RE.
Modifications in the B10 and B26–30 regions of the B chain of human insulin alter
affinity for the human IGF-I receptor more than for the insulin receptor.
Diabetologia.
1997;
40
S54-S61
20
Guerci B, Sauvanet JP.
Subcutaneous insulin: pharmacokinetic variability and glycemic variability.
Diabetes Metab.
2005;
31
4S7-4S24
21
Bell DS.
Insulin therapy in diabetes mellitus: how can the currently available injectable insulins
be most prudently and efficaciously utilised?.
Drugs.
2007;
67
1813-1827
22
Schwartz GP, Burke GT, Katsoyannis PG.
A superactive insulin: B10-aspartic acid]insulin(human).
Proc Natl Acad Sci USA.
1987;
84
6408-6411
23
Ribel U, Hougaard P, Drejer K, Sorensen AR.
Equivalent in vivo biological activity of insulin analogues and human insulin despite
different in vitro potencies.
Diabetes.
1990;
39
1033-1039
24
Kang S, Brange J, Burch A, Volund A, Owens DR.
Absorption kinetics and action profiles of subcutaneously administered insulin analogues
(AspB9GluB27, AspB10, AspB28) in healthy subjects.
Diabetes Care.
1991;
14
1057-1065
25
Kang S, Creagh FM, Peters JR, Brange J, Volund A, Owens DR.
Comparison of subcutaneous soluble human insulin and insulin analogues (AspB9, GluB27;
AspB10; AspB28) on meal-related plasma glucose excursions in type I diabetic subjects.
Diabetes Care.
1991;
14
571-577
26
Berti L, Kellerer M, Bossenmaier B, Seffer E, Seipke G, Haring HU.
The long acting human insulin analog HOE 901: characteristics of insulin signalling
in comparison to Asp(B10) and regular insulin.
Horm Metab Res.
1998;
30
123-129
27
Bonnesen C, Nelander GM, Hansen BF, Jensen P, Krabbe JS, Jensen MB, Hegelund AC, Svendsen JE,
Oleksiewicz MB.
Synchronization in G0/G1 enhances the mitogenic response of cells overexpressing the
human insulin receptor A isoform to insulin.
Cell biology and toxicology.
2010;
26
293-307
28
LeRoith D, Roberts Jr CT.
The insulin-like growth factor system and cancer.
Cancer letters.
2003;
195
127-137
29
Pollak M.
Insulin and insulin-like growth factor signalling in neoplasia.
Nature reviews.
2008;
8
915-928
30
Kuerzel GU, Shukla U, Scholtz HE, Pretorius SG, Wessels DH, Venter C, Potgieter MA,
Lang AM, Koose T, Bernhardt E.
Biotransformation of insulin glargine after subcutaneous injection in healthy subjects.
Curr Med Res Opin.
2003;
19
34-40
31
Agin A, Jeandidier N, Gasser F, Grucker D, Sapin R.
Glargine blood biotransformation: in vitro appraisal with human insulin immunoassay.
Diabetes Metab.
2007;
33
205-212
32
Bahr M, Kolter T, Seipke G, Eckel J.
Growth promoting and metabolic activity of the human insulin analogue [GlyA21, ArgB31,
ArgB32] insulin (HOE 901) in muscle cells.
Eur J Pharmacol.
1997;
320
259-265
33
Kurtzhals P, Schaffer L, Sorensen A, Kristensen C, Jonassen I, Schmid C, Trub T.
Correlations of receptor binding and metabolic and mitogenic potencies of insulin
analogs designed for clinical use.
Diabetes.
2000;
49
999-1005
34
Sciacca L, Cassarino MF, Genua M, Pandini G, Le Moli R, Squatrito S, Vigneri R.
Insulin analogues differently activate insulin receptor isoforms and post-receptor
signalling.
Diabetologia.
2010;
53
1743-1753
35
Weinstein D, Simon M, Yehezkel E, Laron Z, Werner H.
Insulin analogues display IGF-I-like mitogenic and anti-apoptotic activities in cultured
cancer cells.
Diabetes Metab Res Rev.
2009;
25
41-49
36
Mayer D, Shukla A, Enzmann H.
Proliferative effects of insulin analogues on mammary epithelial cells.
Arch Physiol Biochem.
2008;
114
38-44
37
Shukla A, Grisouard J, Ehemann V, Hermani A, Enzmann H, Mayer D.
Analysis of signaling pathways related to cell proliferation stimulated by insulin
analogs in human mammary epithelial cell lines.
Endocr Relat Cancer.
2009;
16
429-441
38
Staiger K, Hennige AM, Staiger H, Haring HU, Kellerer M.
Comparison of the mitogenic potency of regular human insulin and its analogue glargine
in normal and transformed human breast epithelial cells.
Horm Metab Res.
2007;
39
65-67
39
Liefvendahl E, Arnqvist HJ.
Mitogenic effect of the insulin analogue glargine in malignant cells in comparison
with insulin and IGF-I.
Horm Metab Res.
2008;
40
369-374
40
Muller K, Weidinger C, Fuhrer D.
Insulin glargine and insulin have identical effects on proliferation and phosphatidylinositol
3-kinase/AKT signalling in rat thyrocytes and human follicular thyroid cancer cells.
Diabetologia.
2010;
53
1001-1003
41
Staiger K, Staiger H, Schweitzer MA, Metzinger E, Balletshofer B, Haring HU, Kellerer M.
Insulin and its analogue glargine do not affect viability and proliferation of human
coronary artery endothelial and smooth muscle cells.
Diabetologia.
2005;
48
1898-1905
42
Chisalita SI, Johansson GS, Liefvendahl E, Back K, Arnqvist HJ.
Human aortic smooth muscle cells are insulin resistant at the receptor level but sensitive
to IGF1 and IGF2.
J Mol Endocrinol.
2009;
43
231-239
43
Rensing K, Houttuijn Bloemendaal F, Weijers E, Richel D, Büller H, Koolwijk P, van
der Loos C, Twickler T, von der Thüsen J.
Could recombinant insulin compounds contribute to adenocarcinoma progression by stimulating
local angiogenesis?.
Diabetologia.
2010;
53
966-970
44
Ciaraldi TP, Carter L, Seipke G, Mudaliar S, Henry RR.
Effects of the long-acting insulin analog insulin glargine on cultured human skeletal
muscle cells: comparisons to insulin and IGF-I.
J Clin Endocrinol Metab.
2001;
86
5838-5847
45
Eckardt K, May C, Koenen M, Eckel J.
IGF-1 receptor signalling determines the mitogenic potency of insulin analogues in
human smooth muscle cells and fibroblasts.
Diabetologia.
2007;
50
2534-2543
46
Wada T, Azegami M, Sugiyama M, Tsuneki H, Sasaoka T.
Characteristics of signalling properties mediated by long-acting insulin analogue
glargine and detemir in target cells of insulin.
Diabetes Res Clin Pract.
2008;
81
269-277
47
Erbel S, Reers C, Eckstein V, Kleeff J, Buchler W, Nawroth PP, Ritzel RA.
Proliferation of colo-357 pancreatic carcinoma cells and survival of patients with
pancreatic carcinoma are not altered by insulin glargine.
Diabetes Care.
2008;
31
1105-1111
48
Sommerfeld MR, Muller G, Tschank G, Seipke G, Habermann P, Kurrle R, Tennagels N.
In vitro metabolic and mitogenic signaling of insulin glargine and its metabolites.
PloS one.
2010;
5
e9540
49
Stammberger I, Bube A, Durchfeld-Meyer B, Donaubauer H, Troschau G.
Evaluation of the carcinogenic potential of insulin glargine (LANTUS) in rats and
mice.
Int J Toxicol.
2002;
21
171-179
50
Hofmann T, Horstmann G, Stammberger I.
Evaluation of the reproductive toxicity and embryotoxicity of insulin glargine (LANTUS)
in rats and rabbits.
Int J Toxicol.
2002;
21
181-189
51
Stammberger I, Seipke G, Bartels T.
Insulin glulisine – a comprehensive preclinical evaluation.
Int J Toxicol.
2006;
25
25-33
52
Riddle M, Rosenstock J, Gerich J.
Insulin Glargine 4002 Study Investigators: The Treat-to-Target Trial: randomized addition
of glargine or human NPH insulin to oral therapy of type 2 diabetic patients.
Diabetes Care.
2003;
26
3080-3086
53
Luzio S, Dunseath G, Peter R, Pauvaday V, Owens DR.
Comparison of the pharmacokinetics and pharmacodynamics of biphasic insulin aspart
and insulin glargine in people with type 2 diabetes.
Diabetologia.
2006;
49
1163-1168
54
Lepore M, Pampanelli S, Fanelli C, Porcellati F, Bartocci L, Di Vincenzo A, Cordoni C,
Costa E, Brunetti P, Bolli GB.
Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human
insulin analog glargine, NPH insulin, and ultralente human insulin and continuous
subcutaneous infusion of insulin lispro.
Diabetes.
2000;
49
2142-2148
55
Li G, Barrett EJ, Wang H, Chai W, Liu Z.
Insulin at physiological concentrations selectively activates insulin but not insulin-like
growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells.
Endocrinology.
2005;
146
4690-4696
56
Mannucci E, Monami M, Balzi D, Cresci B, Pala L, Melani C, Lamanna C, Bracali I, Bigiarini M,
Barchielli A, Marchionni N, Rotella CM.
Doses of insulin and its analogues and cancer occurrence in insulin-treated type 2
diabetic patients.
Diabetes Care.
2010;
33
1997-2003
57
Ruberte J, Ayuso E, Navarro M, Carretero A, Nacher V, Haurigot V, George M, Llombart C,
Casellas A, Costa C, Bosch A, Bosch F.
Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease.
J Clin Invest.
2004;
113
1149-1157
58
Rosenthal R, Wohlleben H, Malek G, Schlichting L, Thieme H, Bowes Rickman C, Strauss O.
Insulin-like growth factor-1 contributes to neovascularization in age-related macular
degeneration.
Biochem Biophys Res Commun.
2004;
323
1203-1208
59
Poulaki V, Joussen AM, Mitsiades N, Mitsiades CS, Iliaki EF, Adamis AP.
Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy.
Am J Pathol.
2004;
165
457-469
60
Davis MD, Beck RW, Home PD, Sandow J, Ferris FL.
Early retinopathy progression in four randomized trials comparing insulin glargine
and Nph insulin.
Exp Clin Endocrinol Diabetes.
2007;
115
240-243
61
Rosenstock J, Fonseca V, McGill JB, Riddle M, Halle JP, Hramiak I, Johnston P, Davis M.
Similar progression of diabetic retinopathy with insulin glargine and neutral protamine
Hagedorn (NPH) insulin in patients with type 2 diabetes: a long-term, randomised,
open-label study.
Diabetologia.
2009;
52
1778-1788
62
de Herder WW.
Biochemistry of neuroendocrine tumours.
Best Pract Res Clin Endocrinol Metab.
2007;
21
33-41
63
Rosenstock J, Fonseca V, McGill JB, Riddle M, Halle JP, Hramiak I, Johnston P, Davis M.
Similar risk of malignancy with insulin glargine and neutral protamine Hagedorn (NPH)
insulin in patients with type 2 diabetes: findings from a 5 year randomised, open-label
study.
Diabetologia.
2009;
52
1971-1973
64
Home PD, Lagarenne P.
Combined randomised controlled trial experience of malignancies in studies using insulin
glargine.
Diabetologia.
2009;
52
2499-2506
65
Fawcett J, Tsui BT, Kruer MC, Duckworth WC.
Reduced action of insulin glargine on protein and lipid metabolism: possible relationship
to cellular hormone metabolism.
Metabolism.
2004;
53
1037-1044
66
Sandow J.
Growth effects of insulin and insulin analogues.
Arch Physiol Biochem.
2009;
115
72-85
67
Taniguchi CM, Emanuelli B, Kahn CR.
Critical nodes in signalling pathways: insights into insulin action.
Nat Rev Mol Cell Biol.
2006;
7
85-96
Correspondence
T. P. CiaraldiPhD
Department of Medicine (9111G)
University of California
San Diego
9500 Gillman Drive
La Jolla
CA 92093
USA
Phone: +1/858/552 8585 ext. 6450
Fax: +1/858/642 6242
Email: tciaraldi@ucsd.edu