Abstract
Introduction: Surgical site infection (SSI) in the setting of lumbar fusion is associated with
significant morbidity and medical resource utilization. To date, there have been no
studies conducted with sufficient power to directly compare the incidence of SSI following
minimally invasive (MIS) vs. open TLIF procedures. Furthermore, studies are lacking
that quantify the direct medical cost of SSI following fusion procedures. We set out
to determine the incidence of SSI in patients undergoing MIS vs. open TLIF reported
in the literature and to determine the direct hospital cost associated with the treatment
of SSI following TLIF at our institution.
Methods: A systematic Medline search was performed to identify all published studies assessing
SSI after MIS or open TLIF. The cumulative incidence of SSI was calculated from all
reported cohorts and compared between MIS vs. open TLIF. In order to determine the
direct hospital costs associated with the treatment of SSI following TLIF, we retrospectively
reviewed 120 consecutive TLIFs performed at our institution, assessed the incidence
of SSI, and calculated the SSI-related hospital costs from accounting and billing
records.
Results: To date, there have been 10 MIS-TLIF cohorts (362 patients) and 20 open-TLIF cohorts
(1 133 patients) reporting incidences of SSI. The cumulative incidence of reported
SSI was significantly lower for MIS vs. open-TLIF (0.6% vs. 4.0%, p=0.0005). In our
experience with 120 open TLIF procedures, SSI occurred in 6 (5.0%) patients. The mean
hospital cost associated with the treatment of SSI following TLIF was $ 29 110 in
these 6 cases. The 3.4% decrease in reported incidence of SSI for MIS vs. open-TLIF
corresponds to a direct cost savings of $ 98 974 per 100 MIS-TLIF procedures performed.
Conclusions: Post-operative wound infections following TLIF are costly complications. MIS vs.
open TLIF is associated with a decreased reported incidence of SSI in the literature
and may be a valuable tool in reducing hospital costs associated with spine care.
Key words
minimally invasive procedures - transforaminal lumbar interbody fusion - TLIF - post-operative
infection
References
- 1
Beiner JM, Grauer J, Kwon BK. et al .
Postoperative wound infections of the spine.
Neurosurg Focus.
2003;
15
E14
- 2
Olsen MA, Mayfield J, Lauryssen C. et al .
Risk factors for surgical site infection in spinal surgery.
J Neurosurg.
2003;
98
149-155
- 3
Barker 2nd FG.
Efficacy of prophylactic antibiotic therapy in spinal surgery: a meta-analysis.
Neurosurgery.
2002;
51
391-400
; discussion 400–401
- 4
Gaynes RP, Culver DH, Horan TC. et al .
Surgical site infection (SSI) rates in the United States, 1992-1998: the National
Nosocomial Infections Surveillance System basic SSI risk index.
Clin Infect Dis.
2001;
33
(S 02)
S69-S77
- 5
Picada R, Winter RB, Lonstein JE. et al .
Postoperative deep wound infection in adults after posterior lumbosacral spine fusion
with instrumentation: incidence and management.
J Spinal Disord.
2000;
13
42-45
- 6
Calderone RR, Garland DE, Capen DA. et al .
Cost of medical care for postoperative spinal infections.
Orthop Clin North Am.
1996;
27
171-182
- 7
Calderone RR, Thomas Jr JC, Haye W. et al .
Outcome assessment in spinal infections.
Orthop Clin North Am.
1996;
27
201-205
- 8
Whitehouse JD, Friedman ND, Kirkland KB. et al .
The impact of surgical-site infections following orthopedic surgery at a community
hospital and a university hospital: adverse quality of life, excess length of stay,
and extra cost.
Infect Control Hosp Epidemiol.
2002;
23
183-189
- 9
Moskowitz A.
Transforaminal lumbar interbody fusion.
Orthop Clin North Am.
2002;
33
359-366
- 10
Hackenberg L, Halm H, Bullmann V. et al .
Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to
five year results.
Eur Spine J.
2005;
14
551-558
- 11
Peng CW, Yue WM, Poh SY. et al .
Clinical and radiological outcomes of minimally invasive versus open transforaminal
lumbar interbody fusion.
Spine (Phila Pa 1976).
2009;
34
1385-1389
- 12
Dhall SS, Wang MY, Mummaneni PV.
Clinical and radiographic comparison of mini-open transforaminal lumbar interbody
fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term
follow-up.
J Neurosurg Spine.
2008;
9
560-565
- 13
O’Toole JE, Eichholz KM, Fessler RG.
Surgical site infection rates after minimally invasive spinal surgery.
J Neurosurg Spine.
2009;
11
471-476
- 14
Ikuta K, Tono O, Tanaka T. et al .
Surgical complications of microendoscopic procedures for lumbar spinal stenosis.
Minim Invas Neurosurg.
2007;
50
145-149
- 15
Tosteson AN, Skinner JS, Tosteson TD. et al .
The cost effectiveness of surgical versus nonoperative treatment for lumbar disc herniation
over two years: evidence from the Spine Patient Outcomes Research Trial (SPORT).
Spine (Phila Pa 1976).
2008;
33
2108-2115
- 16
Pull ter Gunne AF, Cohen DB.
Incidence, prevalence, and analysis of risk factors for surgical site infection following
adult spinal surgery.
Spine (Phila Pa 1976).
2009;
34
1422-1428
- 17
Schizas C, Tzinieris N, Tsiridis E. et al .
Minimally invasive versus open transforaminal lumbar interbody fusion: evaluating
initial experience.
Int Orthop.
2009;
33
1683-1688
- 18
Villavicencio AT, Burneikiene S, Bulsara KR. et al .
Perioperative complications in transforaminal lumbar interbody fusion versus anterior-posterior
reconstruction for lumbar disc degeneration and instability.
J Spinal Disord Tech.
2006;
19
92-97
- 19
Rantanen J, Hurme M, Falck B. et al .
The lumbar multifidus muscle five years after surgery for a lumbar intervertebral
disc herniation.
Spine (Phila Pa 1976).
1993;
18
568-574
- 20
Gejo R, Matsui H, Kawaguchi Y. et al .
Serial changes in trunk muscle performance after posterior lumbar surgery.
Spine (Phila Pa 1976).
1999;
24
1023-1028
- 21
Sihvonen T, Herno A, Paljarvi L. et al .
Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome.
Spine (Phila Pa 1976).
1993;
18
575-581
- 22
Group EHTA.
.
Treatment of degenerative lumbar spinal stenosis.
Evid Rep Technol Assess (Summ).
2001;
1-5
- 23
Villavicencio AT, Burneikiene S, Nelson EL. et al .
Safety of transforaminal lumbar interbody fusion and intervertebral recombinant human
bone morphogenetic protein-2.
J Neurosurg Spine.
2005;
3
436-443
- 24
Kim JS, Kang BU, Lee SH. et al .
Mini-transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion
augmented by percutaneous pedicle screw fixation: a comparison of surgical outcomes
in adult low-grade isthmic spondylolisthesis.
J Spinal Disord Tech.
2009;
22
114-121
- 25
Lowe TG, Tahernia AD, O’Brien MF. et al .
Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique,
and 2-year results.
J Spinal Disord Tech.
2002;
15
31-38
- 26
Starkweather AR, Witek-Janusek L, Nockels RP. et al .
The multiple benefits of minimally invasive spinal surgery: results comparing transforaminal
lumbar interbody fusion and posterior lumbar fusion.
J Neurosci Nurs.
2008;
40
32-39
- 27
Grob D, Bartanusz V, Jeszenszky D. et al .
A prospective, cohort study comparing translaminar screw fixation with transforaminal
lumbar interbody fusion and pedicle screw fixation for fusion of the degenerative
lumbar spine.
J Bone Joint Surg [Br].
2009;
91
1347-1353
- 28
Deutsch H, Musacchio Jr MJ.
Minimally invasive transforaminal lumbar interbody fusion with unilateral pedicle
screw fixation.
Neurosurg Focus.
2006;
20
E10
- 29
Lauber S, Schulte TL, Liljenqvist U. et al .
Clinical and radiologic 2–4-year results of transforaminal lumbar interbody fusion
in degenerative and isthmic spondylolisthesis grades 1 and 2.
Spine (Phila Pa 1976).
2006;
31
1693-1698
- 30
Schwender JD, Holly LT, Rouben DP. et al .
Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility
and initial results.
J Spinal Disord Tech.
2005;
18
(Suppl)
S1-S6
- 31
Hsieh PC, Koski TR, O’Shaughnessy BA. et al .
Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody
fusion: implications for the restoration of foraminal height, local disc angle, lumbar
lordosis, and sagittal balance.
J Neurosurg Spine.
2007;
7
379-386
- 32
Selznick LA, Shamji MF, Isaacs RE.
Minimally invasive interbody fusion for revision lumbar surgery: technical feasibility
and safety.
J Spinal Disord Tech.
2009;
22
207-213
- 33
Faundez AA, Schwender JD, Safriel Y. et al .
Clinical and radiological outcome of anterior-posterior fusion versus transforaminal
lumbar interbody fusion for symptomatic disc degeneration: a retrospective comparative
study of 133 patients.
Eur Spine J.
2009;
18
203-211
- 34
Lee DY, Jung TG, Lee SH.
Single-level instrumented mini-open transforaminal lumbar interbody fusion in elderly
patients.
J Neurosurg Spine.
2008;
9
137-144
- 35
Rodriguez-Olaverri JC, Zimick NC, Merola A. et al .
Comparing the clinical and radiological outcomes of pedicular transvertebral screw
fixation of the lumbosacral spine in spondylolisthesis versus unilateral transforaminal
lumbar interbody fusion (TLIF) with posterior fixation using anterior cages.
Spine (Phila Pa 1976).
2008;
33
1977-1981
- 36
Jang JS, Lee SH.
Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle
screw and contralateral facet screw fixation.
J Neurosurg Spine.
2005;
3
218-223
- 37
Humphreys SC, Hodges SD, Patwardhan AG. et al .
Comparison of posterior and transforaminal approaches to lumbar interbody fusion.
Spine (Phila Pa 1976).
2001;
26
567-571
- 38
Hee HT, Castro Jr FP, Majd ME. et al .
Anterior/posterior lumbar fusion versus transforaminal lumbar interbody fusion: analysis
of complications and predictive factors.
J Spinal Disord.
2001;
14
533-540
- 39
Potter BK, Freedman BA, Verwiebe EG. et al .
Transforaminal lumbar interbody fusion: clinical and radiographic results and complications
in 100 consecutive patients.
J Spinal Disord Tech.
2005;
18
337-346
- 40
Houten JK, Post NH, Dryer JW. et al .
Clinical and radiographically/neuroimaging documented outcome in transforaminal lumbar
interbody fusion.
Neurosurg Focus.
2006;
20
E8
- 41
Taneichi H, Suda K, Kajino T. et al .
Unilateral transforaminal lumbar interbody fusion and bilateral anterior-column fixation
with two Brantigan I/F cages per level: clinical outcomes during a minimum 2-year
follow-up period.
J Neurosurg Spine.
2006;
4
198-205
- 42
Rosenberg WS, Mummaneni PV.
Transforaminal lumbar interbody fusion: technique, complications, and early results.
Neurosurgery.
2001;
48
569-574
; discussion 574–565
- 43
Chastain CA, Eck JC, Hodges SD. et al .
Transforaminal lumbar interbody fusion: a retrospective study of long-term pain relief
and fusion outcomes.
Orthopedics.
2007;
30
389-392
- 44
Crandall DG, Revella J.
Transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion as
an adjunct to posterior instrumented correction of degenerative lumbar scoliosis:
three year clinical and radiographic outcomes.
Spine (Phila Pa 1976).
2009;
34
2126-2133
- 45
Carter JD, Swearingen AB, Chaput CD. et al .
Clinical and radiographic assessment of transforaminal lumbar interbody fusion using
HEALOS collagen-hydroxyapatite sponge with autologous bone marrow aspirate.
Spine J.
2009;
9
434-438
- 46
Rihn JA, Patel R, Makda J. et al .
Complications associated with single-level transforaminal lumbar interbody fusion.
Spine J.
2009;
9
623-629
Correspondence
M. J. McGirtMD
4347 Village at Vanderbilt
Nashville
TN 37232-8618
USA
Phone: +1/615/322 1883
Phone: +1/410/292 7026
Fax: +1/615/343 6948
Email: mmcgirt1@jhmi.edu