Zusammenfassung
Mit den Erkenntnissen der letzten Jahre, wird es immer offensichtlicher, dass Stammzellen
eine zentrale Rolle in der Re- und Generation von Geweben einnehmen. Besonders deutlich
lässt sich dies an der Entwicklung von Karzinomen zeigen. Primär werden 2 Arten von
Stammzellfunktionen unterschieden, beide Stammzellarten sind von entscheidender Bedeutung
für die Initiierung und Aufrechterhaltung eines Tumors. Zum einen werden Tumore von
einer Vielzahl von Stammzellen infiltriert, die vom Tumor für verschiedene Funktionen
genutzt werden, z. B. für den Aufbau von Gefäßen aber auch anderen Gewebeanteilen.
Dennoch sind diese Stammzellen per se nicht maligne. Andererseits lassen sich auch
die tumorinitiierenden Tumorstammzellen (CSC) nachweisen. Sie sind in der Lage aus
jeder einzelnen Zelle einen Tumor entstehen zu lassen, der histologisch dem gleicht,
aus dem die originale CSC entstammt. Vieles ist an der CSC- Biologie nicht verstanden.
Es fehlen immer noch verlässliche Marker, die eine genaue Charakterisierung einzelner
Untergruppen zulässt. Vieles spricht dafür, dass Tumore aus einem kleinen Prozentsatz
CSC bestehen, die dann, im Sinne einer Hierarchie, in beliebig viele Zellen weiterdifferenzieren
können. Da diese Stammzellen sehr vielen Differenzierungs- und Redifferenzierungsschritten
unterworfen sind, geht es eher um die Beschreibung eines Fließgleichgewichtes. Die
Definition der einzelnen Stadien ist weitgehend unverstanden, ebenso wie die Faktoren
des Mikromilieus, die die einzelnen Differenzierungsschritte auslösen. Dennoch wird
gerade in diesen Fähigkeiten der Schlüssel zur Tumorinitiierung, Metastasierung und
Therapieresistenz vermutet. Bedeutsam sind die biologischen Funktionen und die damit
assoziierten Signalwege innerhalb der Zellen, wie z. B. das Self Renewal. Eine spezifische
Beeinflussung eines solchen Weges könnte auch für die Therapie solcher Zellen von
hohem Interesse sein. Aktuell gibt es hierzu nur vorläufige Überlegungen und einige
in vitro Testungen, die allerdings noch weit von einer translationalen klinischen
Umsetzung entfernt sind.
Abstract
Implication of Stem Cells in the Biology and Therapy of Head and Neck Cancer
Stem cells play a central role in re- and generation of tissues. Special importance
has been attributed to them in cancer biology. 2 entities can be discriminated: cancer
infiltrating stem cells and cancer initiating stem cells. Infiltrating stem cells
will be attracted to the tumor in order to be remodelled for tumor expansion, e. g.
endothelial cells or other cancerous tissue components, yet these cells are per se
benign. Malignant cancer stem cells are capable to generate a new tumor, histologically
identical with the cancer they originate from. Many steps in cancer stem cell biology
are not understood to date. It is still believed that CSC are only a minor cell fraction
in tumor but capable to differentiate in hierarchical manner into any other tissue
type. These stem cells are undergoing many steps of differentiation and dedifferentiation
in a steady state. The factors of the micromilieu contributing to this are largely
not understood. Still these steps are regarded as the key to tumorinitiation, metastases
and resistance to therapy. The biological functions and associated signaltransduction
pathways, e. g. self renewal pathways will be the key to future therapeutical strategies.
Schlüsselwörter
Stammzellen - Tumorstammzellen - EMT - WNT - Self Renewal
Key words
stem cells - cancer stem cells - WNT - EMT - self renewal
Literatur
- 1
Greenlee RT, Hill-Harmon MB, Murray T, Thun M.
Cancer statistics, 2001.
CA Cancer J Clin.
2001;
51
(1)
15-36
- 2
Leemans CR, Tiwari R, Nauta JJ, van der Waal I, Snow GB.
Recurrence at the primary site in head and neck cancer and the significance of neck
lymph node metastases as a prognostic factor.
Cancer.
1994;
73
(1)
187-190
- 3
Young MR.
Tumor skewing of CD34+ progenitor cell differentiation into endothelial cells.
Int J Cancer.
2004;
109
(4)
516-524
- 4
Young MR, Kolesiak K, Wright MA, Gabrilovich DI.
Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial
cell growth factor.
Clin Exp Metastasis.
1999;
17
(10)
881-888
- 5
Reers S, Hagge AC, Pries R, Wollenberg B.
Profiling of potential stem cell marker proteins in HNSCC submitted.
2011;
- 6
Gorjup E, Danner S, Rotter N, Habermann J, Brassat U, Brummendorf TH, Wien S, Meyerhans A,
Wollenberg B, Kruse C, von Briesen H.
Glandular tissue from human pancreas and salivary gland yields similar stem cell populations.
Eur J Cell Biol.
2009;
88
(7)
409-421
- 7
Rotter N, Oder J, Schlenke P, Lindner U, Bohrnsen F, Kramer J, Rohwedel J, Huss R,
Brandau S, Wollenberg B, Lang S.
Isolation and characterization of adult stem cells from human salivary glands.
Stem Cells Dev.
2008;
17
(3)
509-518
- 8
Reers S, Hagge AC, Pries R, Wollenberg B.
Oct-4 expressing subpopulation with chemoresistance properties in head and neck cancer
submitted.
2011;
- 9
Caplan A.
Mesenchymal stem cells: building blocks for molecular medicine in the 21st century.
Trends in Molecular Medicine.
2001;
7
(6)
259-264
- 10
Garrity T, Pandit R, Wright MA, Benefield J, Keni S, Young MR.
Increased presence of CD34+ cells in the peripheral blood of head and neck cancer
patients and their differentiation into dendritic cells.
Int J Cancer.
1997;
73
(5)
663-669
- 11
Pandit R, Lathers DM, Beal NM, Garrity T, Young MR.
CD34+ immune suppressive cells in the peripheral blood of patients with head and neck
cancer.
Ann Otol Rhinol Laryngol.
2000;
109
(8 Pt 1)
749-754
- 12
Young MR, Petruzzelli GJ, Kolesiak K, Achille N, Lathers DM, Gabrilovich DI.
Human squamous cell carcinomas of the head and neck chemoattract immune suppressive
CD34(+) progenitor cells.
Hum Immunol.
2001;
62
(4)
332-341
- 13
Benefield J, Petruzzelli GJ, Fowler S, Taitz A, Kalkanis J, Young MR.
Regulation of the steps of angiogenesis by human head and neck squamous cell carcinomas.
Invasion Metastasis.
1996;
16
(6)
291-301
- 14
Studeny MMF, Champlin RE, Zompetta C, Fidler IJ, Andreeff M.
Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery
into tumors.
Cancer Res.
2002;
62
(13)
3603-3608
- 15
Rafii S, Lyden D, Benezra R, Hattori K, Heissig B.
Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?.
Nat Rev Cancer.
2002;
2
(11)
826-835
- 16
De Palma M, Venneri MA, Roca C, Naldini L.
Targeting exogenous genes to tumor angiogenesis by transplantation of genetically
modified hematopoietic stem cells.
Nat Med.
2003;
9
(6)
789-795
- 17
Stoll BR, Migliorini C, Kadambi A, Munn LL, Jain RK.
A mathematical model of the contribution of endothelial progenitor cells to angiogenesis
in tumors: implications for antiangiogenic therapy.
Blood.
2003;
102
(7)
2555-2561
- 18
Blumenthal RD, Reising A, Leon E, Goldenberg DM.
Modulation of marrow proliferation and chemosensitivity by tumor-produced cytokines
from syngeneic pancreatic tumor lines.
Clin Cancer Res.
2002;
8
(5)
1301-1309
- 19
Lathers DM, Achille N, Kolesiak K, Hulett K, Sparano A, Petruzzelli GJ, Young MR.
Increased levels of immune inhibitory CD34+ progenitor cells in the peripheral blood
of patients with node positive head and neck squamous cell carcinomas and the ability
of these CD34+ cells to differentiate into immune stimulatory dendritic cells.
Otolaryngol Head Neck Surg.
2001;
125
(3)
205-212
- 20
Gabri MR, Menna PL, Scursoni AM, Gomez DE, Alonso DF.
Role of tumor-derived granulocyte-macrophage colony-stimulating factor in mice bearing
a highly invasive and metastatic mammary carcinoma.
Pathobiology.
1999;
67
(4)
180-185
- 21
Young MR, Wright MA, Lozano Y, Matthews JP, Benefield J, Prechel MM.
Mechanisms of immune suppression in patients with head and neck cancer: influence
on the immune infiltrate of the cancer.
Int J Cancer.
1996;
67
(3)
333-338
- 22
Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, Collins SL, Petruzzelli GJ.
Increased recurrence and metastasis in patients whose primary head and neck squamous
cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained
CD34+ natural suppressor cells.
Int J Cancer.
1997;
74
(1)
69-74
- 23
Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR.
Mechanisms of immune suppression in patients with head and neck cancer: presence of
CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage
colony-stimulating factor.
Clin Cancer Res.
1995;
1
(1)
95-103
- 24
Wright MA, Wiers K, Vellody K, Djordjevic D, Young MR.
Stimulation of immune suppressive CD34+ cells from normal bone marrow by Lewis lung
carcinoma tumors.
Cancer Immunol Immunother.
1998;
46
(5)
253-260
- 25
Young MR, Wright MA, Coogan M, Young ME, Bagash J.
Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression
through transforming growth factor beta.
Cancer Immunol Immunother.
1992;
35
(1)
14-18
- 26
Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N.
Maturation of embryonic stem cells into endothelial cells in an in vitro model of
vasculogenesis.
Blood.
1999;
93
(4)
1253-1263
- 27
Banich JC, Kolesiak K, Young MR.
Chemoattraction of CD34+ progenitor cells and dendritic cells to the site of tumor
excision as the first step of an immunotherapeutic approach to target residual tumor
cells.
J Immunother.
2003;
26
(1)
31-40
- 28
Dutt P, Wang JF, Groopman JE.
Stromal cell-derived factor-1 alpha and stem cell factor/kit ligand share signaling
pathways in hemopoietic progenitors: a potential mechanism for cooperative induction
of chemotaxis.
J Immunol.
1998;
161
(7)
3652-3658
- 29
Kim CH, Broxmeyer HE.
In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants:
stromal cell-derived factor-1, steel factor, and the bone marrow environment.
Blood.
1998;
91
(1)
100-110
- 30
Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC.
The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor
cells and provides a new mechanism to explain the mobilization of CD34+ progenitors
to peripheral blood.
J Exp Med.
1997;
185
(1)
111-120
- 31
Young MR, Wright MA, Pandit R.
Myeloid differentiation treatment to diminish the presence of immune-suppressive CD34+
cells within human head and neck squamous cell carcinomas.
J Immunol.
1997;
159
(2)
990-996
- 32
Nitsch SM, Pries R, Wollenberg B.
Head and neck cancer triggers increased IL-6 production of CD34+ stem cells from human
cord blood.
In Vivo.
2007;
21
(3)
493-498
- 33
Pries R, Nitsch S, Wollenberg B.
Role of cytokines in head and neck squamous cell carcinoma.
Expert Rev Anticancer Ther.
2006;
6
(9)
1195-1203
- 34
Young MR, Lathers DM.
Myeloid progenitor cells mediate immune suppression in patients with head and neck
cancers.
Int J Immunopharmacol.
1999;
21
(4)
241-252
- 35
Lathers DM, Achille N, Young MR.
Dendritic cell development from mobilized peripheral blood CD34+ cells.
Methods Mol Biol.
2003;
215
409-415
- 36
Lathers DM, Lubbers E, Wright MA, Young MR.
Dendritic cell differentiation pathways of CD34+ cells from the peripheral blood of
head and neck cancer patients.
J Leukoc Biol.
1999;
65
(5)
623-628
- 37
Lathers DM, Lubbers E, Beal NM, Wright MA, Young MR.
Cultures derived from peripheral blood CD34+ progenitor cells of head and neck cancer
patients and from cord blood are functionally different.
Hum Immunol.
1999;
60
(12)
1207-1215
- 38
Tjoa B, Erickson S, Barren 3rd R, Ragde H, Kenny G, Boynton A, Murphy G.
In vitro propagated dendritic cells from prostate cancer patients as a component of
prostate cancer immunotherapy.
Prostate.
1995;
27
(2)
63-69
- 39
Bernhard H, Disis ML, Heimfeld S, Hand S, Gralow JR, Cheever MA.
Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor
cells of the bone marrow and peripheral blood.
Cancer Res.
1995;
55
(5)
1099-1104
- 40
Kanangat S, Nair S, Babu JS, Rouse BT.
Expression of cytokine mRNA in murine splenic dendritic cells and better induction
of T cell-derived cytokines by dendritic cells than by macrophages during in vitro
costimulation assay using specific antigens.
J Leukoc Biol.
1995;
57
(2)
310-316
- 41
Visvader JE, Lindeman GJ.
Cancer stem cells in solid tumours: accumulating evidence and unresolved questions.
Nat Rev Cancer.
2008;
8
(10)
755-768
- 42
Reya T, Morrison SJ, Clarke MF, Weissman IL.
Stem cells, cancer, and cancer stem cells.
Nature.
2001;
414
(6859)
105-111
- 43
Dick JE.
Stem cell concepts renew cancer research.
Blood.
2008;
112
(13)
4793-4807
- 44
Maenhaut C, Dumont JE, Roger PP, van Staveren WC.
Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis.
Carcinogenesis.
2010;
31
(2)
149-158
- 45
Braakhuis BJ, Leemans CR, Brakenhoff RH.
Expanding fields of genetically altered cells in head and neck squamous carcinogenesis.
Semin Cancer Biol.
2005;
15
(2)
113-120
- 46
Braakhuis BJ, Tabor MP, Leemans CR, van der Waal I, Snow GB, Brakenhoff RH.
Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular
techniques provide new insights and definitions.
Head Neck.
2002;
24
(2)
198-206
- 47
Regenbrecht CR, Lehrach H, Adjaye J.
Stemming cancer: functional genomics of cancer stem cells in solid tumors.
Stem Cell Rev.
2008;
4
(4)
319-328
- 48
Dalerba P, Cho RW, Clarke MF.
Cancer stem cells: models and concepts.
Annu Rev Med.
2007;
58
267-284
- 49
Dalerba P, Clarke MF.
Cancer stem cells and tumor metastasis: first steps into uncharted territory.
Cell Stem Cell.
2007;
1
(3)
241-242
- 50
Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman, Clarke MF,
Ailles LE.
Identification of a subpopulation of cells with cancer stem cell properties in head
and neck squamous cell carcinoma.
Proc Natl Acad Sci U S A.
2007;
104
(3)
973-978
- 51
Prince ME, Ailles LE.
Cancer stem cells in head and neck squamous cell cancer.
J Clin Oncol.
2008;
26
(17)
2871-2875
- 52
Mack B, Gires O.
CD44s and CD44v6 expression in head and neck epithelia.
PLoS One.
2008;
3
(10)
e3360
- 53
Pries R, Witrkopf N, Trenkle T, Nitsch SM, Wollenberg B.
Potential stem cell marker CD44 is constitutively expressed in permanent cell lines
of head and neck cancer.
In Vivo.
2008;
22
(1)
89-92
- 54
Hough MR, Rosten PM, Sexton TL, Kay R, Humphries RK.
Mapping of CD24 and homologous sequences to multiple chromosomal loci.
Genomics.
1994;
22
(1)
154-161
- 55
Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S,
Connolly DC, Zhang Y, Montone K, Butzow R, Coukos G, Zhang L.
Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase
isoform 1 (ALDH1), in human epithelial cancers.
PLoS One.
2010;
5
(4)
e10277
- 56
Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, Chen DT, Tai LK, Yung MC, Chang SC,
Ku HH, Chiou SH, Lo WL.
Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck
squamous cancer.
Biochem Biophys Res Commun.
2009;
385
(3)
307-313
- 57
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J,
Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G.
ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor
of poor clinical outcome.
Cell Stem Cell.
2007;
1
(5)
555-567
- 58
Chen YC, Chang CJ, Hsu HS, Chen YW, Tai LK, Tseng LM, Chiou GY, Chang SC, Kao SY,
Chiou SH, Lo WL.
Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and
neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1.
Oral Oncol.
2010;
46
(3)
158-165
- 59
Visus C, Ito D, Amoscato A, Maciejewska-Franczak M, Abdelsalem A, Dhir R, Shin DM,
Donnenberg VS, Whiteside TL, DeLeo AB.
Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+
T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck.
Cancer Res.
2007;
67
(21)
10538-10545
- 60
Yu CC, Lo WL, Chen YW, Huang PI, Hsu HS, Tseng LM, Hung SC, Kao SY, Chang CJ, Chiou SH.
Bmi-1 Regulates Snail Expression and Promotes Metastasis Ability in Head and Neck
Squamous Cancer-Derived ALDH1 Positive Cells.
J Oncol.
2011;
Epub 2010 Sep 27
- 61
Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B,
Buck DW, Huttner WB.
The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells
and targeted to plasma membrane protrusions.
J Biol Chem.
2000;
275
(8)
5512-5520
- 62
Wu X, Spitz M, Lee J.
Novel susceptibility loci for second primary tumors/recurrence in head and neck cancer
patients: large-scale evaluation of genetic variants.
Cancer Prev Res (Phila Pa).
2009;
2
(7)
617-624
- 63
Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC.
Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma.
J Oral Pathol Med.
2007;
36
(10)
594-603
- 64
Okamoto A, Chikamatsu K, Sakakura K, Hatsushika K, Takahashi G, Masuyama K.
Expansion and characterization of cancer stem-like cells in squamous cell carcinoma
of the head and neck.
Oral Oncol.
2009;
45
(7)
633-639
- 65
Wei XD, Zhou L, Cheng L, Tian J, Jiang JJ, Maccallum J.
In vivo investigation of CD133 as a putative marker of cancer stem cells in Hep-2
cell line.
Head Neck.
2009;
31
(1)
94-101
- 66
Zhou L, Wei X, Cheng L, Tian J, Jiang JJ.
CD133, one of the markers of cancer stem cells in Hep-2 cell line.
Laryngoscope.
2007;
117
(3)
455-460
- 67
Fodde R, Brabletz T.
Wnt/beta-catenin signaling in cancer stemness and malignant behavior.
Curr Opin Cell Biol.
2007;
19
(2)
150-158
- 68
Nusse R, Varmus HE.
Many tumors induced by the mouse mammary tumor virus contain a provirus integrated
in the same region of the host genome.
Cell.
1982;
31
(1)
99-109
- 69
Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R.
The Drosophila Homolog of the Mouse Mammary Oncogene Int-1 Is Identical to the Segment
Polarity Gene Wingless.
Cell.
1987;
50
(4)
649-657
- 70
Angers S, Moon RT.
Proximal events in Wnt signal transduction.
Nat Rev Mol Cell Biol.
2009;
10
(7)
468-477
- 71
Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, Corr M, Carson DA.
Wnt and frizzled receptors as potential targets for immunotherapy in head and neck
squamous cell carcinomas.
Oncogene;.
2002;
21
(43)
6598-6605
- 72
Yang F, Zeng Q, Yu G, Li S, Wang CY.
Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes
invasive growth of HNSCC.
Cell Signal.
2006;
18
(5)
679-687
- 73
Song J, Chang I, Chen Z, Kang M, Wang CY.
Characterization of side populations in HNSCC: highly invasive, chemoresistant and
abnormal Wnt signaling.
PLoS One.
2010;
5
(7)
e11456
- 74
Diaz Prado SM, Medina Villaamil V, Aparicio Gallego G, Blanco Calvo M, Lopez Cedrun JL,
Sironvalle Soliva S, Valladares Ayerbes M, Garcia Campelo R, Anton Aparicio LM.
Expression of Wnt gene family and frizzled receptors in head and neck squamous cell
carcinomas.
Virchows Arch.
2009;
455
(1)
67-75
- 75
Goto M, Mitra RS, Liu M, Lee J, Henson BS, Carey T, Bradford C, Prince M, Wang CY,
Fearon ER, D’Silva NJ.
Rap1 stabilizes beta-catenin and enhances beta-catenin-dependent transcription and
invasion in squamous cell carcinoma of the head and neck.
Clin Cancer Res.
2010;
16
(1)
65-76
- 76
Greenburg G, Hay ED.
Epithelia suspended in collagen gels can lose polarity and express characteristics
of migrating mesenchymal cells.
J Cell Biol.
1982;
95
(1)
333-339
- 77
Thompson EW, Newgreen DF, Tarin D.
Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition?.
Cancer Res.
2005;
65
(14)
5991-5995
; discussion 5995
- 78
Christofori G.
New signals from the invasive front.
Nature.
2006;
441
(7092)
444-450
- 79
Huber MA, Kraut N, Beug H.
Molecular requirements for epithelial-mesenchymal transition during tumor progression.
Curr Opin Cell Biol.
2005;
17
(5)
548-558
- 80
Grunert S, Jechlinger M, Beug H.
Diverse cellular and molecular mechanisms contribute to epithelial plasticity and
metastasis.
Nat Rev Mol Cell Biol.
2003;
4
(8)
657-665
- 81
Thiery JP, Sleeman JP.
Complex networks orchestrate epithelial-mesenchymal transitions.
Nat Rev Mol Cell Biol.
2006;
7
(2)
131-142
- 82
Klymkowsky MW, Savagner P.
Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe.
Am J Pathol.
2009;
174
(5)
1588-1593
- 83
Zeisberg M, Neilson EG.
Biomarkers for epithelial-mesenchymal transitions.
J Clin Invest.
2009;
119
(6)
1429-1437
- 84
Chung CH, Parker J, Levy S, Slebos RJ, Dicker AP, Rodeck U.
Gene expression profiles as markers of aggressive disease-EGFR as a factor.
Int J Radiat Oncol Biol Phys.
2007;
69
(2 Suppl)
S102-S105
- 85
Boyer B, Roche S, Denoyelle M, Thiery JP.
Src and Ras are involved in separate pathways in epithelial cell scattering.
Embo J.
1997;
16
(19)
5904-5913
- 86
De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G.
The transcription factor snail induces tumor cell invasion through modulation of the
epithelial cell differentiation program.
Cancer Res.
2005;
65
(14)
6237-6244
- 87
Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL,
Cardiff RD, Chodosh LA.
The transcriptional repressor Snail promotes mammary tumor recurrence.
Cancer Cell.
2005;
8
(3)
197-209
- 88
Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, Kutok JL, Hartwell K, Richardson AL,
Weinberg RA.
Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with
aggressive basal-like breast cancers.
Proc Natl Acad Sci U S A.
2007;
104
(24)
10069-10074
- 89
Masuda M, Wakasaki T, Suzui M, Toh S, Joe AK, Weinstein IB.
Stat3 orchestrates tumor development and progression: the Achilles’ heel of head and
neck cancers?.
Curr Cancer Drug Targets.
2010;
10
(1)
117-126
- 90
Kupferman ME, Jiffar T, El-Naggar A, Yilmaz T, Zhou G, Xie T, Feng L, Wang J, Holsinger FC,
Yu D, Myers JN.
TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma.
Oncogene.
2010;
29
(14)
2047-2059
- 91
Dohadwala M, Wang G, Heinrich E, Luo J, Lau O, Shih H, Munaim Q, Lee G, Hong L, Lai C,
Abemayor E, Fishbein MC, Elashoff DA, Dubinett SM, St John MA.
The role of ZEB1 in the inflammation-induced promotion of EMT in HNSCC.
Otolaryngol Head Neck Surg.
2000;
142
(5)
753-759
- 92
Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, Teng SC, Wu KJ.
Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression
of NBS1 and Snail predicts metastasis of head and neck cancer.
Oncogene.
2007;
26
(10)
1459-1467
- 93
Clarke MF, Fuller M.
Stem cells and cancer: two faces of eve.
Cell.
2006;
124
(6)
1111-1115
- 94
LaBarge MA, Petersen OW, Bissell MJ.
Of microenvironments and mammary stem cells.
Stem Cell Rev.
2007;
3
(2)
137-146
- 95
Bissell MJ, Labarge MA.
Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the
microenvironment?.
Cancer Cell.
2005;
7
(1)
17-23
- 96
Sagar J, Chaib B, Sales K, Winslet M, Seifalian A.
Role of stem cells in cancer therapy and cancer stem cells: a review.
Cancer Cell Int.
2007;
7
9
- 97
Li L, Neaves WB.
Normal stem cells and cancer stem cells: the niche matters.
Cancer Res.
2006;
66
(9)
4553-4557
- 98
Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, FuY X,
Weichselbaum RR, Rowley DA, Kranz DM, Schreiber H.
Induced sensitization of tumor stroma leads to eradication of established cancer by
T cells.
JEM.
2007;
204
49-55
- 99
Hamzah J.
Vascular normalization in Rgs5-deficient tumours promotes immune destruction.
Nature.
2008;
453
(7193)
410-414
Korrespondenzadresse
Prof. Dr. med. Barbara Wollenberg
Direktorin
Klinik für Hals-, Nasen- und
Ohrenheilkunde
Medizinische Fakultät Lübeck
Ratzeburger Allee 160
(Haus 28)
23538 Lübeck
Email: barbara.wollenberg@uk-sh.de