Planta Med 2011; 77(13): 1504-1511
DOI: 10.1055/s-0030-1270762
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Effects of Flavonoids on Prostaglandin E2 Production and on COX-2 and mPGES-1 Expressions in Activated Macrophages

Mari Hämäläinen1 , Riina Nieminen1 , M. Zaini Asmawi1 , 2 , Pia Vuorela3 , Heikki Vapaatalo4 , Eeva Moilanen1
  • 1The Immunopharmacology Research Group, University of Tampere, School of Medicine and Tampere University Hospital, Tampere, Finland
  • 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
  • 3Pharmaceutical Sciences, Department of Biosciences, Åbo Akademi University, Turku, Finland
  • 4Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
Further Information

Publication History

received May 28, 2010 revised January 19, 2011

accepted January 21, 2011

Publication Date:
21 February 2011 (online)

Abstract

Prostaglandin E2 (PGE2) has a central role in inflammation and both cyclooxygenase-2 (COX-2) and prostaglandin E synthases are critical enzymes in its synthesis. In inflammation, bacterial products and cytokines enhance the expression of COX-2 and inducible microsomal prostaglandin E synthase-1 (mPGES-1) which are functionally coupled to result in increased PGE2 formation in macrophages and tissue cells. In the present study, we systematically investigated the effects of 26 naturally occurring flavonoids on PGE2 production and on COX-2 and mPGES-1 expression in activated macrophages. Twelve flavonoids, i.e., flavone, luteolin-7-glucoside, kaempferol, isorhamnetin, morin, quercetin, naringenin, taxifolin, pelargonidin, daidzein, genistein, and genistin effectively inhibited lipopolysaccharide (LPS)–induced PGE2 production. Four flavonoids (flavone, isorhamnetin, daidzein, and genistein) inhibited significantly LPS-induced COX-2 expression, while mPGES-1 expression was downregulated by kaempferol and isorhamnetin. The present study characterizes the effects of flavonoids on PGE2 production and on COX-2 and mPGES-1 expression in activated macrophages. The results add to our knowledge of the anti-inflammatory actions of flavonoids and introduce kaempferol and isorhamnetin as compounds capable of downregulating the expression of mPGES-1.

References

  • 1 Simmons D L, Botting R M, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition.  Pharmacol Rev. 2004;  56 387-437
  • 2 Jakobsson P J, Thoren S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target.  Proc Natl Acad Sci USA. 1999;  96 7220-7225
  • 3 Devaux Y, Seguin C, Grosjean S, de Talance N, Camaeti V, Burlet A, Zannad F, Meistelman C, Mertes P-M, Longrois D. Lipopolysaccharide-induced increase of prostaglandin E(2) is mediated by inducible nitric oxide synthase activation of the constitutive cyclooxygenase and induction of membrane-associated prostaglandin E synthase.  J Immunol. 2001;  167 3962-3971
  • 4 Uematsu S, Matsumoto M, Takeda K, Akira S. Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway.  J Immunol. 2002;  168 5811-5816
  • 5 Rao P, Knaus E E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond.  J Pharm Pharm Sci. 2008;  11 81s-110s
  • 6 Samuelsson B, Morgenstern R, Jakobsson P J. Membrane prostaglandin E synthase-1: a novel therapeutic target.  Pharmacol Rev. 2007;  59 207-224
  • 7 Hertog M G, Hollman P C, Katan M B, Kromhout D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands.  Nutr Cancer. 1993;  20 21-29
  • 8 Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A. Flavonoid intake and risk of chronic diseases.  Am J Clin Nutr. 2002;  76 560-568
  • 9 Crozier A, Jaganath I B, Clifford M N. Dietary phenolics: chemistry, bioavailability and effects on health.  Nat Prod Rep. 2009;  26 1001-1043
  • 10 Middleton Jr E, Kandaswami C, Theoharides T C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer.  Pharmacol Rev. 2000;  52 673-751
  • 11 Alvesalo J, Vuorela H, Tammela P, Leinonen M, Saikku P, Vuorela P. Inhibitory effect of dietary phenolic compounds on Chlamydia pneumoniae in cell cultures.  Biochem Pharmacol. 2006;  71 735-741
  • 12 Andres A, Donovan S M, Kuhlenschmidt T B, Kuhlenschmidt M S. Isoflavones at concentrations present in soy infant formula inhibit rotavirus infection in vitro.  J Nutr. 2007;  137 2068-2073
  • 13 Benavente-Garcia O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity.  J Agric Food Chem. 2008;  56 6185-6205
  • 14 Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages.  Mediators Inflamm. 2007;  2007 45673
  • 15 Kim H P, Son K H, Chang H W, Kang S S. Anti-inflammatory plant flavonoids and cellular action mechanisms.  J Pharmacol Sci. 2004;  96 229-245
  • 16 Liang Y C, Huang Y T, Tsai S H, Lin-Shiau S Y, Chen C F, Lin J K. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages.  Carcinogenesis. 1999;  20 1945-1952
  • 17 Raso G M, Meli R, Di Carlo G, Pacilio M, Di Carlo R. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1.  Life Sci. 2001;  68 921-931
  • 18 Mamani-Matsuda M, Kauss T, Al-Kharrat A, Rambert J, Fawaz F, Thiolat D, Moynet D, Coves S, Malvy D, Mossalayi M D. Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators.  Biochem Pharmacol. 2006;  72 1304-1310
  • 19 Ruetten H, Thiemermann C. Effects of tyrphostins and genistein on the circulatory failure and organ dysfunction caused by endotoxin in the rat: a possible role for protein tyrosine kinase.  Br J Pharmacol. 1997;  122 59-70
  • 20 Banerjee T, Van der Vliet A, Ziboh V A. Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line.  Prostaglandins Leukot Essent Fatty Acids. 2002;  66 485-492
  • 21 Garcia-Mediavilla V, Crespo I, Collado P S, Esteller A, Sanchez-Campos S, Tunon M J, González-Gallego J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells.  Eur J Pharmacol. 2007;  557 221-229
  • 22 Jones D J, Lamb J H, Verschoyle R D, Howells L M, Butterworth M, Lim C K, Ferry D, Farmer P B, Gescher A J. Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity.  Br J Cancer. 2004;  91 1213-1219
  • 23 Sivaramakrishnan V, Niranjali Devaraj S. Morin regulates the expression of NF-kappaB-p 65, COX-2 and matrix metalloproteinases in diethylnitrosamine induced rat hepatocellular carcinoma.  Chem Biol Interact. 2009;  180 353-359
  • 24 Wang Y H, Wang W Y, Chang C C, Liou K T, Sung Y J, Liao J F, Chen C F, Chang S, Hou Y C, Chou Y C, Shen Y C. Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation.  J Biomed Sci. 2006;  13 127-141
  • 25 Hou D X, Yanagita T, Uto T, Masuzaki S, Fujii M. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure-activity relationship and molecular mechanisms involved.  Biochem Pharmacol. 2005;  70 417-425
  • 26 Akarasereenont P, Mitchell J A, Appleton I, Thiemermann C, Vane J R. Involvement of tyrosine kinase in the induction of cyclo-oxygenase and nitric oxide synthase by endotoxin in cultured cells.  Br J Pharmacol. 1994;  113 1522-1528
  • 27 Jovanovic D V, Mineau F, Notoya K, Reboul P, Martel-Pelletier J, Pelletier J P. Nitric oxide induced cell death in human osteoarthritic synoviocytes is mediated by tyrosine kinase activation and hydrogen peroxide and/or superoxide formation.  J Rheumatol. 2002;  29 2165-2175
  • 28 Lau T Y, Leung L K. Soya isoflavones suppress phorbol 12-myristate 13-acetate-induced COX-2 expression in MCF-7 cells.  Br J Nutr. 2006;  96 169-176
  • 29 Westman M, Korotkova M, af Klint E, Stark A, Audoly L P, Klareskog L, Ulfgren A K, Jakobsson P J. Expression of microsomal prostaglandin E synthase 1 in rheumatoid arthritis synovium.  Arthritis Rheum. 2004;  50 1774-1780
  • 30 Li X, Afif H, Cheng S, Martel-Pelletier J, Pelletier J P, Ranger P, Fahmi H. Expression and regulation of microsomal prostaglandin E synthase-1 in human osteoarthritic cartilage and chondrocytes.  J Rheumatol. 2005;  32 887-895
  • 31 Koeberle A, Bauer J, Verhoff M, Hoffmann M, Northoff H, Werz O. Green tea epigallocatechin-3-gallate inhibits microsomal prostaglandin E(2) synthase-1.  Biochem Biophys Res Commun. 2009;  388 350-354

Prof. Eeva Moilanen

The Immunopharmacology Research Group
School of Medicine
University of Tampere

33014 Tampere

Finland

Phone: +35 83 35 51 67 41

Fax: +35 83 35 51 80 82

Email: eeva.moilanen@uta.fi

>