Zusammenfassung
Wohl keine andere wissenschaftliche Entdeckung der letzten Jahre hat die regenerative
Medizin so beschleunigt und gleichzeitig heftige gesellschaftliche Kontroversen ausgelöst
wie die Gewinnung von embryonalen Stammzellen (ESC). Heute, rund ein Jahrzehnt später,
werden in kleinem Rahmen diese pluripotenten Zellen in ersten klinischen Studien angewandt.
Trotz immunologischer Probleme, ethischer Bedenken und der Gefahr der Teratombildung
sind die ESCs nach wie vor wegen ihrer Plastizität und Expansionsfähigkeit ein interessanter
Kandidat für die Therapie. Adulte Stammzellen (ASC) werden schon länger therapeutisch
sowohl allogen als auch autolog insbesondere in der hämatopoietischen Stammzelltransplantation
genutzt, und derzeit gewinnen bei den ASCs besonders mesenchymale Stammzellen durch
überlegene Plastizität und Expansion mehr und mehr an Bedeutung. Reprogrammierte
Zellen sind speziell in der autologen Anwendung und in Verbindung mit Gentherapie
von größtem therapeutischem Interesse, allerdings gibt es trotz erheblicher Fortschritte
auch bei der nicht-invasiven Reprogrammierung im Bereich der klinischen Sicherheit
in bezug auf Mutationen und Teratombildung noch großen Forschungsbedarf.
Abstract
No other scientific development in the last years has quickend regenerative medicine
and at the same time lead to many controversies as the generation of embryonic stem
cells (ESC). Today, one decade later, these cells are utilized in small scale for
the first time in clinical studies. Despite immunological problems, ethical concerns
and the threat of termatoma formation ESC are due to their high plasticity and propagation
capabilities a very interesting candidate for therapy. Adult stem cells (ASC) are
already in use for many years, eypecially in allogeneic and autologous hematopoietic
stem cell transplantation, and currently, in the field of ACSs, mesenchymal stem cells
gain more and more attention due to their superior plasticity and expansion qualities.
Reprogrammed cells are of special therapeutic interest for autologous applications
and in combination with corrective gene therapy; however, beside tremendous progress
in the non-invasive reprogramming technology there is still much work to accomplish
to reach with regard to mutations and teratoma formation a safety level acceptable
for clinical use.
Schlüsselwörter
embryonale Stammzellen - adulte Stammzellen - hämatopoietische Stammzelltransplantation
- mesenchymale Stammzellen
Key words
embryonic stem cells - adult stem cells - hematopoietic stem cell transplantation
- mesenchymal stem cells
Literatur
- 1
Jaenisch R, Young R.
Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming.
Cell.
2008;
132
567-582
- 2
Vazin T, Becker K G, Chen J et al.
A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation
from human embryonic stem cells.
PLoS One.
2009;
4
e6606
- 3
Gilbert S F, Howes-Mischel R.
“Show me your original face before you were born”: the convergence of public fetuses
and sacred DNA.
Hist Philos Life Sci.
2004;
26
377-394
- 4
Huang J, Wang F, Okuka M et al.
Association of telomere length with authentic pluripotency of ES / iPS cells.
Cell Res.
2011;
21
779-792
- 5
Rosler E S, Fisk G J, Ares X et al.
Long-term culture of human embryonic stem cells in feeder-free conditions.
Dev Dyn.
2004;
229
259-274
- 6
Hayflick L.
The establishment of a line (WISH) of human amnion cells in continuous cultivation.
Exp Cell Res.
1961;
23
14-20
- 7
Baker D E, Harrison N J, Maltby E et al.
Adaptation to culture of human embryonic stem cells and oncogenesis in vivo.
Nat Biotechnol.
2007;
25
207-215
- 8
Draper J S, Smith K, Gokhale P et al.
Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells.
Nat Biotechnol.
2004;
22
53-54
- 9
Martin G R.
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned
by teratocarcinoma stem cells.
Proc Natl Acad Sci USA.
1981;
78
7634-7638
- 10
Evans M J, Kaufman M H.
Establishment in culture of pluripotential cells from mouse embryos.
Nature.
1981;
292
154-156
- 11
Thomson J A, Itskovitz-Eldor J, Shapiro S S et al.
Embryonic stem cell lines derived from human blastocysts.
Science.
1998;
282
1145-1147
- 12
Thomson J A, Kalishman J, Golos T G et al.
Isolation of a primate embryonic stem cell line.
Proc Natl Acad Sci USA.
1995;
92
7844-7848
- 13
Reubinoff B E, Pera M F, Fong C Y et al.
Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro.
Nat Biotechnol.
2000;
18
399-404
- 14
Amit M, Carpenter M K, Inokuma M S et al.
Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative
potential for prolonged periods of culture.
Dev Biol.
2000;
227
271-278
- 15
Fernandes A M, Meletti T, Guimaraes R et al.
Worldwide survey of published procedures to culture human embryonic stem cells.
Cell Transplant.
2010;
19
509-523
- 16
Beattie G M, Lopez A D, Bucay N et al.
Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder
layers.
Stem Cells.
2005;
23
489-495
- 17
James D, Levine A J, Besser D et al.
TGFbeta / activin / nodal signaling is necessary for the maintenance of pluripotency
in human embryonic stem cells.
Development.
2005;
132
1273-1282
- 18
Fraga A M, Souza de Araujo E S, Stabellini R et al.
A Survey of Parameters Involved in the Establishment of New Lines of Human Embryonic
Stem Cells.
Stem Cell Rev.
2010;
6
234-236
- 19
Fraga A M, Sukoyan M, Rajan P et al.
Establishment of a Brazilian line of human embryonic stem cells in defined medium:
implications for cell therapy in an ethnically diverse population.
Cell Transplant.
2011;
20
431-440
- 20
Mosher W D, Jones J.
Use of contraception in the United States: 1982–2008.
Vital Health Stat.
2010;
23
1-44
- 21
Agarwal S, Holton K L, Lanza R.
Efficient differentiation of functional hepatocytes from human embryonic stem cells.
Stem Cells.
2008;
26
1117-1127
- 22
Loya K, Eggenschwiler R, Ko K et al.
Hepatic differentiation of pluripotent stem cells.
Biol Chem.
2009;
390
1047-1055
- 23
Segev H, Fishman B, Ziskind A et al.
Differentiation of human embryonic stem cells into insulin-producing clusters.
Stem Cells.
2004;
22
265-274
- 24
Wen Y, Chen B, Ildstad S T.
Stem cell-based strategies for the treatment of type 1 diabetes mellitus.
Expert Opin Biol Ther.
2011;
11
41-53
- 25
Liew C G.
Generation of insulin-producing cells from pluripotent stem cells: from the selection
of cell sources to the optimization of protocols.
Rev Diabet Stud.
2010;
7
82-92
- 26
Rippon H J, Lane S, Qin M et al.
Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo.
Proc Am Thorac Soc.
2008;
5
717-722
- 27
Samadikuchaksaraei A, Cohen S, Isaac K et al.
Derivation of distal airway epithelium from human embryonic stem cells.
Tissue Eng.
2006;
12
867-875
- 28
Barberi T, Willis L M, Socci N D et al.
Derivation of multipotent mesenchymal precursors from human embryonic stem cells.
PLoS Med.
2005;
2
e161
- 29
Kensah G, Gruh I, Viering J et al.
A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial
cardiac tissue during stimulation and maturation.
Tissue Eng Part C Methods.
2011;
17
463-473
- 30
Tandon N, Marsano A, Maidhof R et al.
Optimization of electrical stimulation parameters for cardiac tissue engineering.
J Tissue Eng Regen Med.
2011;
5
e115-e125
- 31
Chadwick K, Wang L, Li L et al.
Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem
cells.
Blood.
2003;
102
906-915
- 32
Ledran M H, Krassowska A, Armstrong L et al.
Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells
derived from hematopoietic niches.
Cell Stem Cell.
2008;
3
85-98
- 33
Aberdam E, Barak E, Rouleau M et al.
A pure population of ectodermal cells derived from human embryonic stem cells.
Stem Cells.
2008;
26
440-444
- 34
Yue F, Johkura K, Shirasawa S et al.
Differentiation of primate ES cells into retinal cells induced by ES cell-derived
pigmented cells.
Biochem Biophys Res Commun.
2010;
394
877-883
- 35
Reubinoff B E, Itsykson P, Turetsky T et al.
Neural progenitors from human embryonic stem cells.
Nat Biotechnol.
2001;
19
1134-1140
- 36
Lee S K, Lee B, Ruiz E C et al.
Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron
progenitor cells.
Genes Dev.
2005;
19
282-294
- 37
Du Z W, Li X J, Nguyen G D et al.
Induced expression of Olig2 is sufficient for oligodendrocyte specification but not
for motoneuron specification and astrocyte repression.
Mol Cell Neurosci.
2006;
33
371-380
- 38
Erceg S, Lainez S, Ronaghi M et al.
Differentiation of human embryonic stem cells to regional specific neural precursors
in chemically defined medium conditions.
PLoS One.
2008;
3
e2122
- 39
Gerrard L, Rodgers L, Cui W.
Differentiation of human embryonic stem cells to neural lineages in adherent culture
by blocking bone morphogenetic protein signaling.
Stem Cells.
2005;
23
1234-1241
- 40
Zhang Y, Wang J, Chen G et al.
Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation
from human embryonic stem cells.
Biochem Biophys Res Commun.
2011;
404
610-614
- 41
Olsen A L, Stachura D L, Weiss M J.
Designer blood: creating hematopoietic lineages from embryonic stem cells.
Blood.
2006;
107
1265-1275
- 42
Olivier E N, Qiu C, Velho M et al.
Large-scale production of embryonic red blood cells from human embryonic stem cells.
Exp Hematol.
2006;
34
1635-1642
- 43
Lu S J, Li F, Yin H et al.
Platelets generated from human embryonic stem cells are functional in vitro and in
the microcirculation of living mice.
Cell Res.
2011;
21
530-545
- 44
Woll P S, Grzywacz B, Tian X et al.
Human embryonic stem cells differentiate into a homogeneous population of natural
killer cells with potent in vivo antitumor activity.
Blood.
2009;
113
6094-6101
- 45
Karlsson K R, Cowley S, Martinez F O et al.
Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free
differentiation in M-CSF and IL-3.
Exp Hematol.
2008;
36
1167-1175
- 46
Mohib K, Allan D, Wang L.
Human embryonic stem cell-extracts inhibit the differentiation and function of monocyte-derived
dendritic cells.
Stem Cell Rev.
2010;
6
611-621
- 47
Martin C H, Woll P S, Ni Z et al.
Differences in lymphocyte developmental potential between human embryonic stem cell
and umbilical cord blood-derived hematopoietic progenitor cells.
Blood.
2008;
112
2730-2737
- 48
Galic Z, Kitchen S G, Kacena A et al.
T lineage differentiation from human embryonic stem cells.
Proc Natl Acad Sci USA.
2006;
103
11742-11747
- 49
Bretzner F, Gilbert F, Baylis F et al.
Target populations for first-in-human embryonic stem cell research in spinal cord
injury.
Cell Stem Cell.
2011;
8
468-475
- 50
Matveyenko A V, Georgia S, Bhushan A et al.
Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm
derived from human embryonic stem cells in athymic nude rats.
Am J Physiol Endocrinol Metab.
2010;
299
E713-E720
- 51
Gage F H.
Mammalian neural stem cells.
Science.
2000;
287
1433-1438
- 52
Takacs L, Toth E, Berta A et al.
Stem cells of the adult cornea: from cytometric markers to therapeutic applications.
Cytometry A.
2009;
75
54-66
- 53
Alonso L, Fuchs E.
Stem cells in the skin: waste not, Wnt not.
Genes Dev.
2003;
17
1189-1200
- 54
Al Battah F, De Kock J, Ramboer E et al.
Evaluation of the multipotent character of human adipose tissue-derived stem cells
isolated by Ficoll gradient centrifugation and red blood cell lysis treatment.
Toxicol In Vitro.
2011;
[Epub ahead of print]
- 55
Miki T.
Amnion-derived stem cells: in quest of clinical applications.
Stem Cell Res Ther.
2011;
2
25
- 56
Landgren H, Curtis M A.
Locating and labeling neural stem cells in the brain.
J Cell Physiol.
2011;
226
1-7
- 57
Bovetti S, Gribaudo S, Puche A C et al.
A. From progenitors to integrated neurons: Role of neurotransmitters in adult olfactory
neurogenesis.
J Chem Neuroanat.
2011;
[Epub ahead of print]
- 58
Corona R, Larriva-Sahd J, Paredes R G.
Paced-mating increases the number of adult new born cells in the internal cellular
(granular) layer of the accessory olfactory bulb.
PLoS One.
2011;
6
e19380
- 59
Brennand K, Melton D.
Slow and steady is the key to beta-cell replication.
J Cell Mol Med.
2009;
13
472-487
- 60
Docherty K.
Pancreatic stellate cells can form new beta-like cells.
Biochem J.
2009;
421
e1-e4
- 61
McCulloch E A, Till J E, Siminovitch L.
The role of independent and dependent stem cells in the control of hemopoietic and
immunologic responses.
Wistar Inst Symp Monogr.
1965;
4
61-68
- 62
Flomenberg N, DiPersio J, Calandra G.
Role of CXCR4 chemokine receptor blockade using AMD3100 for mobilization of autologous
hematopoietic progenitor cells.
Acta Haematol.
2005;
114
198-205
- 63
Dzierzak E, Medvinsky A.
The discovery of a source of adult hematopoietic cells in the embryo.
Development.
2008;
135
2343-2346
- 64
Barbosa C M, Leon C M, Nogueira-Pedro A et al.
Differentiation of hematopoietic stem cell and myeloid populations by ATP is modulated
by cytokines.
Cell Death Dis.
2011;
2
e165
- 65
Aguila J R, Liao W, Yang J et al.
SALL4 is a robust stimulator for the expansion of hematopoietic stem cells.
Blood.
2011;
[Epub ahead of print]
- 66
Kim J Y, Jeon H B, Yang Y S et al.
Application of human umbilical cord blood-derived mesenchymal stem cells in disease
models.
World J Stem Cells.
2010;
2
34-38
- 67
Hilfiker A, Kasper C, Hass R et al.
Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative
medicine: is there a future for transplantation?.
Langenbecks Arch Surg.
2011;
396
489-497
- 68
Dominici M, Horwitz E M.
Getting beneath the skin to understand MSC complexity.
Cytotherapy.
2010;
12
438-439
- 69
Choong P F, Mok P L, Cheong S K et al.
Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro.
Cytotherapy.
2007;
9
170-183
- 70
Xu J, Wang W, Kapila Y et al.
Multiple differentiation capacity of STRO-1+ / CD146+ PDL mesenchymal progenitor cells.
Stem Cells Dev.
2009;
18
487-496
- 71
Phuc P V, Nhung T H, Loan D T et al.
Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells
into insulin-secreting cells.
In Vitro Cell Dev Biol Anim.
2011;
47
54-63
- 72
Leeb C, Jurga M, McGuckin C et al.
Promising new sources for pluripotent stem cells.
Stem Cell Rev.
2010;
6
15-26
- 73
Krampera M, Glennie S, Dyson J et al.
Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific
T cells to their cognate peptide.
Blood.
2003;
101
3722-3729
- 74
Le Blanc K, Tammik C, Rosendahl K et al.
HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal
stem cells.
Exp Hematol.
2003;
31
890-896
- 75
Rocha V, Labopin M, Sanz G et al.
Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults
with acute leukemia.
N Engl J Med.
2004;
351
2276-2285
- 76
Lee K H, Lee J H, Lee J H et al.
Reduced-intensity conditioning therapy with busulfan, fludarabine, and anti-thymocyte
globulin for HLA-haploidentical hematopoietic cell transplantation in acute leukemia
and myelodysplastic syndrome.
Blood.
2011;
[Epub ahead of print]
- 77
Porrata L F, Markovic S N.
Autograft mediated adoptive immunotherapy of cancer in the context of autologous stem
cell transplantation.
World J Clin Oncol.
2010;
1
29-34
- 78
Smits E L, Lee C, Hardwick N et al.
Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia.
Cancer Immunol Immunother.
2011;
60
757-769
- 79
Serana F, Sottini A, Chiarini M et al.
The different extent of B and T cell immune reconstitution after hematopoietic stem
cell transplantation and enzyme replacement therapies in SCID patients with adenosine
deaminase deficiency.
J Immunol.
2010;
185
7713-7722
- 80
Allers K, Hutter G, Hofmann J et al.
Evidence for the cure of HIV infection by CCR5Delta32 / Delta32 stem cell transplantation.
Blood.
2011;
117
2791-2799
- 81
Eapen M, Le Rademacher J, Antin J H et al.
Effect of stem cell source on outcomes after adult unrelated donor transplantation
in severe aplastic anemia.
Blood.
2011;
[Epub ahead of print]
- 82
Ayas M, Al-Jefri A, Al-Seraihi A et al.
Matched-related allogeneic stem cell transplantation in Saudi patients with Fanconi
anemia: 10 year’s experience.
Bone Marrow Transplant.
2008;
42
S45-S48
- 83
Inatomi T, Nakamura T, Koizumi N et al.
Midterm results on ocular surface reconstruction using cultivated autologous oral
mucosal epithelial transplantation.
Am J Ophthalmol.
2006;
141
267-275
- 84
Nishida K, Yamato M, Hayashida Y et al.
Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral
mucosal epithelium.
N Engl J Med.
2004;
351
1187-1196
- 85
Badiavas E V, Falanga V.
Treatment of chronic wounds with bone marrow-derived cells.
Arch Dermatol.
2003;
139
510-516
- 86
Blocklet D, Toungouz M, Berkenboom G et al.
Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary
injection.
Stem Cells.
2006;
24
333-336
- 87
Janssens S, Theunissen K, Boogaerts M et al.
Bone marrow cell transfer in acute myocardial infarction.
Nat Clin Pract Cardiovasc Med.
2006;
3
S69-S72
- 88
Stilley C S, Ryan C M, Kondziolka D et al.
Changes in cognitive function after neuronal cell transplantation for basal ganglia
stroke.
Neurology.
2004;
63
1320-1322
- 89
Bauchet L, Lonjon N, Perrin F E et al.
Strategies for spinal cord repair after injury: A review of the literature and information.
Ann Phys Rehabil Med.
2009;
52
330-351
- 90
Terai S, Yamamoto N, Omori K et al.
A new cell therapy using bone marrow cells to repair damaged liver.
J Gastroenterol.
2002;
37
162-163
- 91
Ishikawa T, Banas A, Hagiwara K et al.
Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal
stem cells.
Curr Stem Cell Res Ther.
2010;
5
182-189
- 92
Baiguera S, Gonfiotti A, Jaus M et al.
Development of bioengineered human larynx.
Biomaterials.
2011;
32
4433-4442
- 93
Roh J D, Sawh-Martinez R, Brennan M P et al.
Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated
process of vascular remodeling.
Proc Natl Acad Sci USA.
2010;
107
4669-4674
- 94
Koch S, Flanagan T C, Sachweh J S et al.
Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation.
Biomaterials.
2010;
31
4731-4739
- 95
Haisch A.
Ear reconstruction through tissue engineering.
Adv Otorhinolaryngol.
2010;
68
108-119
- 96
Huang S, Xu Y, Wu C et al.
In vitro constitution and in vivo implantation of engineered skin constructs with
sweat glands.
Biomaterials.
2010;
31
5520-5525
- 97
Lee D Y, Yang J M, Baek M K.
A dermal equivalent can be developed from fibroblast culture by means of a high concentration
of serum.
Br J Dermatol.
2011;
164
1109-1111
- 98
Gunter K C, Caplan A L, Mason C et al.
Cell therapy medical tourism: time for action.
Cytotherapy.
2010;
12
965-968
- 99
Haimes E, Taylor K.
Researching the Relationships between Tissue Providers, Clinicians, and Stem Cell
Scientists.
Cell Stem Cell.
2011;
8
613-615
- 100
Yamanaka S, Takahashi K.
[Induction of pluripotent stem cells from mouse fibroblast cultures].
Tanpakushitsu Kakusan Koso.
2006;
51
2346-2351
- 101
Takahashi K, Tanabe K, Ohnuki M et al.
Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
Cell.
2007;
131
861-872
- 102
Takahashi K, Yamanaka S.
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures
by defined factors.
Cell.
2006;
126
663-676
- 103
Maherali N, Sridharan R, Xie W et al.
Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread
tissue contribution.
Cell Stem Cell.
2007;
1
55-70
- 104
Park I H, Zhao R, West J A et al.
Reprogramming of human somatic cells to pluripotency with defined factors.
Nature.
2008;
451
141-146
- 105
Hemberger M, Dean W, Reik W.
Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s
canal.
Nat Rev Mol Cell Biol.
2009;
10
526-537
- 106
Avilion A A, Nicolis S K, Pevny L H et al.
Multipotent cell lineages in early mouse development depend on SOX2 function.
Genes Dev.
2003;
17
126-140
- 107
Chambers I, Silva J, Colby D et al.
Nanog safeguards pluripotency and mediates germline development.
Nature.
2007;
450
1230-1234
- 108
Sridharan R, Tchieu J, Mason M J et al.
Role of the murine reprogramming factors in the induction of pluripotency.
Cell.
2009;
136
364-377
- 109
Stadtfeld M, Nagaya M, Utikal J et al.
Induced pluripotent stem cells generated without viral integration.
Science.
2008;
322
945-949
- 110
Yu J, Hu K, Smuga-Otto K et al.
Human induced pluripotent stem cells free of vector and transgene sequences.
Science.
2009;
324
797-801
- 111
Kaji K, Norrby K, Paca A et al.
Virus-free induction of pluripotency and subsequent excision of reprogramming factors.
Nature.
2009;
458
771-775
- 112
Woltjen K, Michael I P, Mohseni P et al.
piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells.
Nature.
2009;
458
766-770
- 113
Soldner F, Hockemeyer D, Beard C et al.
Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming
factors.
Cell.
2009;
136
964-977
- 114
Lin S L, Chang D C, Lin C H et al.
Regulation of somatic cell reprogramming through inducible mir-302 expression.
Nucleic Acids Res.
2011;
39
1054-1065
- 115
Yang C S, Li Z, Rana T M.
microRNAs modulate iPS cell generation.
RNA.
2011;
[Epub ahead of print]
- 116
Kim D, Kim C H, Moon J I et al.
Generation of human induced pluripotent stem cells by direct delivery of reprogramming
proteins.
Cell Stem Cell.
2009;
4
472-476
- 117
Wang Y, Mah N, Prigione A et al.
A transcriptional roadmap to the induction of pluripotency in somatic cells.
Stem Cell Rev.
2010;
6
282-296
- 118
Nishino K, Toyoda M, Yamazaki-Inoue M et al.
DNA Methylation Dynamics in Human Induced Pluripotent Stem Cells over Time.
PLoS Genet.
2011;
7
e1002085
- 119
Mikkelsen T S, Hanna J, Zhang X et al.
Dissecting direct reprogramming through integrative genomic analysis.
Nature.
2008;
454
49-55
- 120
Huangfu D, Maehr R, Guo W et al.
Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule
compounds.
Nat Biotechnol.
2008;
26
795-797
- 121
Hacein-Bey-Abina S, Garrigue A, Wang G P et al.
Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1.
J Clin Invest.
2008;
118
3132-3142
- 122
Kiskinis E, Eggan K.
Progress toward the clinical application of patient-specific pluripotent stem cells.
J Clin Invest.
2010;
120
51-59
- 123
Marchetto M C, Yeo G W, Kainohana O et al.
Transcriptional signature and memory retention of human-induced pluripotent stem cells.
PLoS One.
2009;
4
e7076
- 124
Hussein S M, Batada N N, Vuoristo S et al.
Copy number variation and selection during reprogramming to pluripotency.
Nature.
2011;
471
58-62
- 125
Gore A, Li Z, Fung H L et al.
Somatic coding mutations in human induced pluripotent stem cells.
Nature.
2011;
471
63-67
- 126
Lister R, Pelizzola M, Kida Y S et al.
Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells.
Nature.
2011;
471
68-73
- 127
Okita K, Nakagawa M, Hyenjong H et al.
Generation of mouse induced pluripotent stem cells without viral vectors.
Science.
2008;
322
949-953
- 128
Hanna J, Wernig M, Markoulaki S et al.
Treatment of sickle cell anemia mouse model with iPS cells generated from autologous
skin.
Science.
2007;
318
1920-1923
- 129
Raya A, Rodriguez-Piza I, Guenechea G et al.
Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent
stem cells.
Nature.
2009;
460
53-59
T. Müller
Institut für Transfusionsmedizin · Medizinische Hochschule Hannover
Carl-Neuberg Straße 1
30625 Hannover
eMail: mueller.thomas@mh-hannover.de