Zusammenfassung
Ähnlich wie die Elektrolyt-Homöostase ist auch der intrazelluläre pH-Wert (pHi) von
Neuronen besonders intensiv kontrolliert. Dieses geschieht beispielsweise durch spezielle
membranständige Systeme, die Säureäquivalente in die Zelle hinein und wieder heraus
transportieren können. Die Regulation des pHi dient unter anderem der Steuerung der
neuronalen Erregbarkeit, da eine Erregbarkeitssteigerung in den meisten Neuronen den
pHi senkt und vice versa eine intrazelluläre Azidose im Sinne einer negativen Rückkopplungs-Schleife
die Erregbarkeit wieder senkt. Änderungen des pHi haben darüber hinaus Einflüsse auf
beinahe jede Zellfunktion. Da über die Wirkung von Neuropsychopharmaka auf die H + -Homöostase wenig bekannt ist, untersuchten wir diesbezüglich mehrere Antipsychotika,
Antidepressiva, Antikonvulsiva und Lithium. Als Modell wurden hippocampale CA 3-Neurone
in Gewebeschnitten (vom Meerschweinchen) eingesetzt, die mit dem intrazellulären pHi-Indikator
BCECF gefärbt worden waren. In therapeutischen und supratherapeutischen Konzentrationen
veränderten alle gemessenen Antipsychotika, die meisten Antidepressiva und gut die
Hälfte aller untersuchten Antikonvulsiva reversibel den pHi dieser Neurone. Obwohl
diesbezüglich noch bestätigende In-vivo-Experimente fehlen, möchten wir auf die mögliche
pHi-Aktivität von Neuropsychopharmaka aufmerksam machen, insbesondere, wenn deren
therapeutische oder toxische Wirkungen diskutiert werden.
Abstract
The intracellular pH (pHi) of neurons is tightly regulated, mainly by membrane-bound
transporters acting as acid extruders or acid loaders. Regulation of pHi helps to
control neuronal excitability, as increased bioelectric activity moderately lowers
pHi and, in the sense of a negative feedback loop, intracellular acidosis mostly reduces
neuronal excitability. Moreover, a change of pHi widely influences complex cellular
functions. With respect to neuropsychopharmaca, little is known about whether or not
they may affect neuronal H + -homeostasis. To this aim, we tested several antipsychotics, antidepressants, anticonvulsants,
and lithium for effects on neuronal pHi, using guinea pig hippocampal slice preparations
in which CA 3 pyramidal neurons were loaded with the pHi-sensitive dye BCECF-AM. All
antipsychotics, most antidepressants and about half of the anticonvulsants tested
so far elicited reversible changes of neuronal pHi when applied at therapeutic and
supratherapeutic concentrations. Although these results await confirmatory in vivo
experiments, we believe that the pHi activity of neuropsychopharmaca needs further
attention, especially when therapeutic mechanisms or even harmful side effects are
discussed.
Schlüsselwörter
intrazellulärer pH - Neuropsychopharmaka - pH-Regulation
Keywords
intracellular pH - neuropsychopharmaca - pH regulation
Literatur
- 1 Brunton L L, Lazo J S, Parker K L (Eds).. Goodman & Gilman’s The Pharmacological
Basis of Therapeutics, 11e. The McGraw-Hill Companies. , online version 2010.
- 2 Benkert O, Hippius H. Psychiatrische Pharmakotherapie. 7. Auflage Heidelberg: Springer
Verlag; 2009
- 3
Bonnet U, Wiemann M.
Intracellular free protons: relevance for neuropsychopharmacology?.
Pharmacopsychiatry.
1999;
32
173
- 4
Tombaugh G C.
Mild acidosis delays hypoxic spreading depression and improves neuronal recovery in
hippocampal slices.
J Neurosci.
1994;
14
5635-5643
- 5
Wang J W, Richardson S R, Thayer S A.
Intracellular acidification is not a prerequisite for glutamate-triggered death of
cultured hippocampal neurons.
Neurosci Lett.
1995;
186
139-144
- 6
Tombaugh G C, Sapolsky R M.
Evolving concepts about the role of acidosis in ischemic neuropathology.
J Neurochem.
1993;
61
793-803
- 7
Vornov J, Thomas A G, Jo D.
Protective effects of extracellular acidosis and blockade of sodium/hydrogen ion exchange
during recovery from metabolic inhibition in neuronal tissue culture.
J Neurochem.
1996;
67
2379-2389
- 8
Saybasili H.
The protective role of mild acidic pH shifts on synaptic NMDA current in hippocampal
slices.
Brain Res.
1998;
786
128-132
- 9 Siesjö B K. Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical
pathology. In: Kogure K, Hossman K A, Siesjö B K, (Eds) Progress in Brain Research
63. Amsterdam: Elsevier; 1985: 121-154
- 10
Chesler M, Kaila K.
Modulation of pH by neuronal activity.
Trends Neurosci.
1992;
15
396-402
- 11
Trapp S, Lückermann M, Brooks P A et al.
Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity.
J Physiol.
1996;
496
695-710
- 12
Bonnet U, Wiemann M, Bingmann D.
CO2 /HCO3–withdrawal from the bath medium of hippocampal slices: biphasic effect on intracellular
pH and bioelectric activity of CA 3-neurons.
Brain Res.
1998;
796
161-170
- 13
Xiong Z Q, Saggau P, Stringer J L.
Activity-dependent intracellular acidification correlates with the duration of seizure
activity.
J Neurosci.
2000;
20
1290-1296
- 14
Leniger T, Thöne J, Bonnet U et al.
Levetiracetam inhibits Na+ -dependent Cl–/HCO3
– -exchange of adult hippocampal CA 3 neurones from guinea-pigs.
Br J Pharmacol.
2004;
142
1073-1080
- 15
Kaila K.
Ionic basis of GABAA receptor channel function in the nervous system.
Prog Neurobiol.
1994;
42
489-537
- 16
Bonnet U, Bingmann D.
GABAA-responses of CA 3 neurones: contribution of bicarbonate and of Cl–-extrusion mechanisms.
NeuroReport.
1995;
6
700-704
- 17
Hartley Z, Dubinsky J M.
Changes in intracellular pH associated with glutamate excitotoxicity.
J Neurosci.
1993;
13
4690-4699
- 18
Amato A, Ballerini C, Attwell D.
Intracellular pH changes produced by glutamate uptake in rat hippocampal slices.
J Neurophysiol.
1994;
72
1686-1696
- 19
Trudeau L -E, Parpura V, Haydon P G.
Activation of neurotransmitter release in hippocampal nerve terminals during recovery
from intracellular acidification.
J Neurophysiol.
1999;
81
2627-2635
- 20
Cannizzaro C, Monastero R, Vacca M et al.
[3 H]-DA release evoked by low pH medium and internal H+ accumulation in rat hypothalamic synaptosomes: involvement of calcium ions.
Neurochem Int.
2003;
43
9-17
- 21
Toll L, Howard B D.
Role of Mg2+-ATPase and pH gradient in the storage of catecholamines in synaptic vesicles.
Biochemistry.
1978;
17
2517-2523
- 22
Moriyama Y, Futai M.
H+-ATPase, a primary pump for accumulation of neurotransmitters, is a major constituent
of brain synaptic vesicles.
Biochem Biophys Res Commun.
1990;
173
443-448
- 23
Traynelis S F, Cull-Candy S G.
Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons.
Nature.
1990;
345
347-350
- 24
Chesler M.
Regulation and modulation of pH in the brain.
Physiol Rev.
2003;
83
1183-1221
- 25
Stella N, Pellerin L, Magistretti P J.
Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical
neurons: involvement of a pH-sensitive membrane phospholipase A2.
J Neurosci.
1995;
15
3307-3317
- 26
Vignes M, Blanc E, Guiramand J et al.
A modulation of glutamate-induced phosphoinositide breakdown by intracellular pH changes.
Neuropharmacology.
1996;
45
1595-1604
- 27 Schwiening C J, Thomas R C. pH consequences of calcium-regulation. In: Kaila K,
Ransom B R, (Eds.) pH and brain function,. New York: Wiley-Liss; 1998: 373-393
- 28
Takahashi K I, Copenhagen D R.
Modulation of neuronal function by intracellular pH.
Neurosci Res.
1996;
24
109-116
- 29
MacVicar B, Jahnsen H.
Uncoupling of CA 3 pyramidal neurons by propionate.
Brain Res.
1985;
330
141-145
- 30
Perez-Velazquez J L, Valiante T A, Carlen P L.
Modulation of gap junctional mechanisms during calcium-free induced field burst activity:
a possible role for electrotonic coupling in epileptogenesis.
J Neurosci.
1994;
14
4308-4317
- 31
Orlowski J, Grinstein S.
Na+/H+ exchangers of mammalian cells.
J Biol Chem.
1997;
272
22373-22376
- 32 Bevensee M O, Boron W F. pH regulation in mammalian neurons. (Eds) pH and brain
function. New York: Wiley-Liss; 1998: 211-233
- 33
Cox G A, Lutz C M, Yang C L et al.
Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice.
Cell.
1997;
91
139-148
- 34
Hentschke M, Wiemann M, Hentschke S et al.
Mice with a targeted disruption of the Cl–/HCO3
– exchanger display a reduced seizure threshold.
Mol Cell Biol.
2006;
26
182-191
- 35
Jacobs S, Ruusuvuori E, Sipilä S T et al.
Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced
neuronal excitability.
PNAS.
2008;
105
311-316
- 36
Kato T, Inubushi T, Kato N.
Magnetic resonance spectroscopy in affective disorders.
J Neuropsychiat Clin Neurosci.
1998;
10
133-147
- 37
Van der Grond J, Gerson J R, Laxter K D et al.
Regional distribution of interictal 31P metabolic changes in patients with temporal lobe epilepsy.
Epilepsia.
1998;
39
527-536
- 38
Maddock R J.
The lactic acid response to alkalosis in panic disorder: an integrative review.
J Neuropsychiatry Clin Neurosci.
2001;
13
22-34
- 39
Wemmie J A, Chen J, Askwith C C et al.
The acid-activated ion channel ASIC contibutes to synaptic plasticity, learning, and
memory.
Neuron.
2002;
34
463-477
- 40
Hoffmann E K, Simonsen L O.
Membrane mechanisms in volume and pH regulation in vertebrate cells.
Physiol Rev.
1989;
69
315-382
- 41
Roberts Jr E L Jr, Chih C P.
The pH buffering capacity of hippocampal slices from young adult and aged rats.
Brain Res.
1998;
779
271-275
- 42
Kornhuber J, Reichel M, Tripal P et al.
The role of ceramide in major depressive disorder.
Eur Arch Psychiatry Clin Neurosci.
2009;
259 (Suppl 2)
199-204
- 43
Smith G AM, Brett C L, Church J.
Effects of noradrenaline on intracellular pH in acutely dissociated adult rat hippocampal
neurones.
J Physiol.
1998;
512
487-505
- 44
Goncalves P P, Meireles S M, Neves P et al.
Synaptic vesicle Ca2
+/H+ antiport: dependence on the proton electrochemical gradient.
Brain Res Mol Brain Res.
1999;
71
178-184
- 45 Andersen P. Organization of hippocampal neurons and their interconnections. In:
Isaacson R L, Pribam K H, (Eds) The hippocampus, Vol 1: structure and development,.
New York: Plenum; 1975: 155-175
- 46
Da Silva F HL, Wittner M P, Boeijinga P H et al.
Anatomic organization and physiology of the limbic cortex.
Physiol Rev.
1990;
2
453-511
- 47
Bonnet U, Wiemann M.
Ammonium prepulse: effects on intracellular pH and bioelectric activity of CA 3-neurones
in guinea pig hippocampal slices.
Brain Res.
1999;
840
16-22
- 48
Bonnet U, Bingmann D, Wiltfang J et al.
Modulatory effects of neuropsychopharmaca on intracellular pH of hippocampal neurones
in.
Br J Pharmacol.
2010;
159
474-483
- 49
Bevensee M O, Schwiening C F, Boron W F.
Use of BCECF and propidium iodide to assess membrane integrity of acutely isolated
CA 1 neurons from rat hippocampus.
J Neurosci Methods.
1995;
58
61-75
- 50
Rambeck B, Jürgens U H, May T W et al.
Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum
concentrations of antiepileptic drugs measured intraoperatively in patients with intractable
epilepsy.
Epilepsia.
2006;
47
681-94
- 51
Wang X, Ratnaraj N, Patsalos P N.
The pharmacokinetic inter-relationship of tiagabine in blood, cerebrospinal fluid
and brain extracellular fluid (frontal cortex and hippocampus).
Seizure.
2004;
13
574-581
- 52
Walker M C, Tong X, Perry H et al.
Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics
of lamotrigine.
Br J Pharmacol.
2000;
130
242-248
- 53
Glotzbach R K, Preskorn S H.
Brain concentrations of tricyclic antidepressants: single-dose kinetics and relationship
to plasma concentrations in chronically dosed rats.
Psychopharmacology.
1982;
78
25-27
- 54
Malberg J, Eisch A J, Nestler E J et al.
Chronic antidepressant treatment increases neurogenesis in adult hippocampus.
J Neurosci.
2000;
20
9104-9110
- 55
Madsen T, Treschow A, Bengzon J et al.
Increased neurogenesis in a model of electroconvulsive therapy.
Biol Psychiatry.
2000;
47
1043-1049
- 56
Duman R S.
Neuronal plasticity: consequences of stress and actions of antidepressant treatment.
Dialogues Clin Neurosci.
2004;
6
157-169
- 57
Wiemann M, Splettstoesser F, Pannek H W et al.
Effects of levetiracetam and topiramate on pHi regulation of human neocortical brain
slices.
Acta Physiol.
2006;
186 (Suppl 1)
126
- 58
Roos A, Boron W F.
Intracellular pH.
Physiol Rev.
1981;
61
296-434
- 59
Bonnet U, Bingmann D, Wiemann M.
Intracellular pH modulates spontaneous and epileptiform bioelectric activity of hippocampal
CA 3-neurones.
Eur Neuropsychopharmacol.
2000;
97
97-103
- 60
Pasternack M, Voipio L, Kaila K.
Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in
isolated rat hippocampal pyramidal neurons.
Acta Physiol Scand.
1993;
148
229-231
- 61
Garnovskaya M N, Mukhin Y, Raymond J R.
Rapid activation of sodium-proton exchange and extracellular signalregulated protein
kinase in fibroblasts by G protein-coupled 5-HT1A receptor involves distinct signalling
cascades.
Biochem J.
1998;
330
489-495
- 62
Schewe B, Schmälzlin E, Walz B.
Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary
glands: the contribution of V-ATPase and carbonic anhydrase.
The Journal of Experimental Biology.
2008;
211
805-815
- 63
Moy L Y, Wang S P, Sonsalla P K.
Mitochondrial stress-induced dopamine efflux and neuronal damage by malonate involves
the dopamine transporter.
J Pharmacol Experimental Therap.
2007;
320
747-756
- 64
Wreden C C, Johnson J, Tran C et al.
The H+-coupled electrogenic lysosomal amino acid transporter LYAAT1 localizes to the axon
and plasma membrane of hippocampal neurons.
J Neuroscience.
2003;
23
1265-1275
- 65
Numata M, Petrecca K, Lake N et al.
Identification of a mitochondrial Na+/H+ exchanger.
J Biol Chem.
1998;
273
6951-6959
- 66
Bonnet U, Leniger T, Wiemann M.
Moclobemide reduces intracellular pH and neuronal activity of CA 3 neurones in guinea-pig
hippocampal slices-implication for its neuroprotective properties.
Neuropharmacology.
2000;
39
2067-2074
- 67
Cao Y, Mager S, Lester H A.
H+permeation and pH regulation at a mammalian serotonin transporter.
J Neurosci.
1997;
17
2257-2266
- 68 LeBlanc G, Bassilana M, Damiano-Forano E. Na+/H+exchange in bacteria and organelles.
In: Grinstein S, editor. Na+/H+exchange.. Florida: CRC Press; 1988: 103-117
- 69
Kobaysashi Y, Pang T, Iwamoto T et al.
Lithium activates mammalian Na+/H+-exchangers: isoform specificity and inhibition by genistein.
Eur J Physiol.
2000;
439
455-462
- 70
Greenbaum N, Wilson D F.
Role of intramitochondrial pH in the energetics and regulation of mitochondrial oxidative
phosphorylation.
Biochim Biophys Acta.
1991;
1058
113-120
- 71
Skulachev V P.
Mitochondrial physiology and pathology, concepts of programmed death of organelles,
cells and organisms.
Mol Aspects Med.
1999;
20
139-184
- 72
Friberg H, Wieloch T.
Mitochondrial permeability transition in acute neurodegeneration.
Biochimie.
2002;
84
241-250
- 73
Cohen G, Kesler N.
Monoamine oxidase and mitochondrial repiration.
J Neurochemistry.
1999;
73
2310-2315
- 74
Bonnet U, Scherbaum N, Wiemann M.
The endogenous alkaloid harmane: acidifying and activity-reducing effects on hippocampal
neurons in vitro.
Progress in Neuro-Psychopharmacology & Biological Psychiatry.
2008;
32
362-367
- 75
Büsselberg D, Wiemann M, Bingmann D et al.
(2002) Monoamino oxidase inhibition is associated with neuronal acidification.
Pflügers Arch Eur J Physiol.
2002;
443 (Suppl)
269
- 76
Marcocci L, De Marchi U, Salvi M et al.
Tyramine and monoamine oxidase inhibitors as modulators of the mitochondrial membrane
permeability transition.
J Membr Biol.
2002;
188
23-31
- 77
Wallace K B, Starkow A A.
Mitochondrial targets of drug toxicity.
Annu Rev Pharmacol Toxicol.
2000;
40
353-88
- 78
Wall S M, Kraut J A, Muallem S.
Modulation of Na+-H+ exchange activity by intracellular Na+, H+, and Li+ in IMCD cells.
Am J Physiol.
1988;
255
F331-F339
- 79
Bitran J A, Potter W Z, Manji H K et al.
Chronic Li+ attenuates agonist- and phorbol ester-mediated Na+/H+ antiporter activity in HL 60 cells.
Eur J Pharmacol.
1990;
188
193-202
- 80
Rumbach L, Mutet C, Cremel G et al.
Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance
and transmembrane protein movement studies.
Mol Pharmacol.
1986;
30
270-273
- 81
Benavides J, Martin A, Ugarte M et al.
Inhibition by valproic acid of pyruvate uptake by brain mitochondria.
Biochem Pharmacol.
1982;
31
1633-1636
- 82
Bonnet U, Bingmann D, Leniger T et al.
Valproate acidifies hippocampal CA 3-neurones – a novel mode of action.
Eur Neuropsychopharmacol.
2002;
12
279-285
- 83 Woodbury D M, Kemp J W. Other antiepileptic drugs. Sulfonamides and derivates:
acetazolamide. In: Levy R, Mattson R, Meldrum B, (Eds). Antiepileptic drugs.. New
York: Raven Press; 1989: 855-875
- 84
Leniger T, Wiemann M, Bingmann D et al.
Carbonic anhydrase inhibitor sulthiame reduces intracellular epileptiform activity
of hippocampal CA 3 neurones.
Epilepsia.
2002;
43
469-474
- 85
Leniger T, Thöne J, Wiemann M.
Topiramate modulates pH of hippocampal CA 3 neurons by combined effects on carbonic
anhydrase and Cl–/HCO3
– -exchange.
Br J Pharmacol.
2004;
142
831-842
- 86
Ali A, Ahmad F J, Pillai K K et al.
Amiloride protects against pentylenetetrazole-induced kindling in mice.
Br J Pharmacol.
2005;
145
880-884
- 87
Hansen N, Finzel M, Block F.
Antiepileptika-induzierte Enzephalopathie.
Fortschr Neurol Psychiat.
2010;
78
590-598
- 88
Hugg J W, Laxer K D, Matson G B et al.
Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging.
Neurology.
1992;
42
2011-2018
- 89
Garcia P A, Laxer K D, Grond van der J et al.
Phosphorus Magnetic Resonance Spectroscopy imaging in patients with frontal lobe epilepsy.
Ann Neurol.
1994;
35
217-221
- 90
Hamakawa H, Murashita J, Yamada N et al.
Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder.
Psychiatry and Clinical Neurosciences.
2004;
58
82-88
- 91
Cowley D S, Arana G W.
The diagnostic utility of lactate sensitivity in panic disorder.
Arch Gen Psychiatry.
1990;
47
277-284
- 92
Shioiri T, Kato T, Murashita J et al.
High-energy phosphate metabolism in the frontal lobes of patients with panic disorder
detected by phase-encoded 31P-MRS.
Biol Psychiatry.
1996;
40
785-793
- 93
Xiang Z M, Bergold P J.
Synaptic depression and neuronal loss in transiently acidic hippocampal slice cultures.
Brain Res.
2000;
881
77-87
- 94
Zha X M, Wemmie J A, Green S H et al.
Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density
of dendritic spines.
PNAS.
2006;
103
16556-16561
- 95
Soleimani M, Singh G.
Physiologic and molecular aspects of Na+/H+ exchangers in health and disease processes.
J Investig Med.
1995;
43
419-430
- 96
Kaku D A, Giffard R G, Choi D W.
Neuroprotective effects of glutamate antagonists and extracellular acidity.
Science.
1993;
260
1516-1518
- 97
Liu C N, Somps C J.
Na+/H+-exchanger-1 inhibitors reduce neuronal excitability and alter Na+-channel inactivation properties in rat primary sensory neurons.
Toxicological Sciences.
2008;
103
346-353
- 98
Bonnet U, Wiemann M, Bingmann D et al.
Transmembrane acid extrusion mechanisms: a target for neuropsychopharmacological drug
design?.
Pharmacopsychiatry.
1997;
30
154
- 99
Bonnet U, Leniger T, Wiemann M.
Alteration of intracellular pH and activity of CA 3-pyramidal cells in guinea pig
hippocampal slices by inhibition of transmembrane acid extrusion.
Brain Research.
2000;
872
116-124
- 100
Sánchez C, Hyttel J.
Comparison of the effects of antidepressants and their metabolites on reuptake of
biogenic amines and on receptor binding.
Cell Mol Neurobiology.
1999;
19
467-488
- 101
Richelson E.
Pharmacology of antidepressants.
Mayo Clin Proc.
2001;
76
511-527
- 102
Raley-Susman K M, Sapolsky R M, Kopito R R.
Cl–/HCO3
– exchange function differs in adult and fetal hippocampal neurons.
Brain Res.
1993;
614
308-314
- 103
Bosman G J, Renkawek K, Van Workum F P et al.
Neuronal anion exchange proteins in Alzheimer’s disease pathology.
J Neural Transm Suppl.
1998;
54
248-257
- 104
Rae C, Scott R B, Thompson C H et al.
Is pH a biochemical marker of IQ?.
Proc R Soc Lond B.
1996;
263
1061-1064
- 105
Parker M D, Bouyer P, Daley C M et al.
Cloning and characterization of novel human SCL4A8 gene products encoding Na+ -driven Cl–/HCO3
– exchanger variants NDCBE-A, -C, -D.
Physiol Genomics.
2008;
34
265-276
- 106 Bevensee M O, Boron W F. Fluorescence indicators. In: Kaila K, Ransom B R (Eds)
pH and brain function.. New York: Wiley-Liss; 1998: 129-153
Prof. Dr. med. Udo Bonnet
Klinik für Psychiatrie und Psychotherapie Evangelisches Krankenhaus Castrop-Rauxel,
Akademisches Lehrkrankenhaus der Universität Duisburg-Essen
Grutholzallee 21
44577 Castrop-Rauxel
Email: u.bonnet@evk-castrop-rauxel.de