Zusammenfassung
Ziel: Der Differenzierungsgrad zählt zu den am häufigsten ermittelten prognostischen Faktoren
des invasiven Mammakarzinoms. Diese Studie wurde durchgeführt, um das Potenzial der
Magnet-Resonanz Mammografie (MRM) zur nicht invasiven Abschätzung des Differenzierungsgrads
zu ermitteln. Material und Methoden: 399 invasive Mammakarzinome wurden in die Studie eingeschlossen (einheitliches klinisches
Messprotokoll; Genehmigung durch Ethikkommission) und von 2 geblindeten, erfahrenen
Radiologen (> 500 MRM) prospektiv im Konsensus evaluiert. Zur Gewebsdifferenzierung
wurden detaillierte MRM-Deskriptoren (n = 18) herangezogen. Basierend auf diesen Analysen
wurde anschließend mittels uni- und multivariater Statistik das Potenzial der MRM
zur Abschätzung des Differenzierungsgrads ermittelt (X2-Tests; binär logistische Regression;
area under the ROC-curve [AUC]). Ergebnisse: 8 der insgesamt 18 MRM-Deskriptoren zeigten eine Assoziation mit dem Differenzierungsgrad,
z. B. „interne Struktur”, „Ödem” (p < 0,001), „Cutisverdickung” und „Zerstörung des
Mamillensaums” (p < 0,05). Die multivariate Analyse ermittelte ein signifikantes Potenzial
zur Prädiktion des Differenzierungsgrads mittels MRM (p < 0,001). Hierbei konnten
insbesondere prognostisch günstige, „gut” differenzierte Karzinome mit hoher Treffsicherheit
identifiziert werden (AUC = 0,930). Schlussfolgerung: Die Abschätzung des Differenzierungsgrads invasiver Mammakarzinoms ist anhand typischer
MRM-Charakteristika in einem standardisierten klinischen Messprotokoll möglich. Da
der Differenzierungsgrad m. E. als Surrogat für das Gesamtüberleben gilt, kann die
MRM somit neben differenzialdiagnostischen auch initiale prognostische Informationen
liefern.
Abstract
Purpose: Tumor grading (TG) is one of the most widely used prognostic factors in the case
of breast cancer. This study aims to identify the potential of magnetic resonance
mammography (MRM) to non-invasively assess TG. Materials and Methods: 399 invasive breast cancers were included (IRB approval; standardized clinical MRM
protocols). All breast cancers were prospectively evaluated by two experienced (>
500 MRM) and blinded radiologists in consensus. In every cancer a set of 18 previously
published MRM descriptors was assessed. These were assessed by univariate and multivariate
analysis to identify the potential of MRM to predict TG (X2 statistics; binary logistic
regression; area under the ROC curve [AUC]). Results: 8 of 18 MRM descriptors were associated with TG, e. g. internal structure, edema
(p < 0.001), as well as skin thickening and destruction of the nipple line (p < 0.05).
MRM was feasible to predict TG by multivariate analysis (p < 0.001). The highest potential
could be identified to predict well differentiated breast cancers with good prognosis
(AUC = 0.930). Conclusion: MR mammography was able to non-invasively assess tumor grading in a standard protocol.
Since tumor grading is a surrogate for overall survival, these results provide further
evidence to the clinical application of MR mammography as a noninvasive prognostic
tool.
Key words
breast - mammography - MR imaging - contrast agents - decision analysis - gadolinium
References
1
Houssami N, Ciatto S, Macaskill P et al.
Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging:
systematic review and meta-analysis in detection of multifocal and multicentric cancer.
J Clin Oncol.
2008;
26
3248-3258
2
Jemal A, Siegel R, Ward E et al.
Cancer statistics, 2009.
CA Cancer J Clin.
2009;
59
225-249
3
Soerjomataram I, Louwman M W, Ribot J G et al.
An overview of prognostic factors for long-term survivors of breast cancer.
Breast Cancer Res Treat.
2008;
107
309-330
4
Mortellaro V E, Marshall J, Singer L et al.
Magnetic resonance imaging for axillary staging in patients with breast cancer.
J Magn Reson Imaging.
2009;
30
309-312
5
Lee S H, Cho N, Kim S J et al.
Correlation between high resolution dynamic MR features and prognostic factors in
breast cancer.
Korean J Radiol.
2008;
9
10-18
6
Montemurro F, Martincich L, Sarotto I et al.
Relationship between DCE-MRI morphological and functional features and histopathological
characteristics of breast cancer.
Eur Radiol.
2007;
17
1490-1497
7
Teifke A, Behr O, Schmidt M et al.
Dynamic MR imaging of breast lesions: correlation with microvessel distribution pattern
and histologic characteristics of prognosis.
Radiology.
2006;
239
351-360
8
Tuncbilek N, Karakas H M, Okten O O.
Dynamic magnetic resonance imaging in determining histopathological prognostic factors
of invasive breast cancers.
Eur J Radiol.
2005;
53
199-205
9
Szabo B K, Aspelin P, Kristoffersen Wiberg M et al.
Invasive breast cancer: correlation of dynamic MR features with prognostic factors.
Eur Radiol.
2003;
13
2425-2435
10
Mussurakis S, Buckley D L, Horsman A.
Dynamic MR imaging of invasive breast cancer: correlation with tumour grade and other
histological factors.
Br J Radiol.
1997;
70
446-451
11
Fischer U, Kopka L, Brinck U et al.
Prognostic value of contrast-enhanced MR mammography in patients with breast cancer.
Eur Radiol.
1997;
7
1002-1005
12
Dietzel M, Baltzer P A, Vag T et al.
Magnetic resonance mammography in small vs. advanced breast lesions – systematic comparison
reveals significant impact of lesion size on diagnostic accuracy in 936 histologically
verified breast lesions.
Fortschr Röntgenstr.
2011;
183
126-135
13
Harris G C, Denley H E, Pinder S E et al.
Correlation of histologic prognostic factors in core biopsies and therapeutic excisions
of invasive breast carcinoma.
Am J Surg Pathol.
2003;
27
11-15
14
Elston C W, Ellis I O.
Pathological prognostic factors in breast cancer. I. The value of histological grade
in breast cancer: experience from a large study with long-term follow-up.
Histopathology.
1991;
19
403-410
15 Edge S, Byrd D, Carducci M et al eds.. TNM Classification of Malignant Tumours.
7 ed. New York: Springer; 2009
16
Fischer U, Kopka L, Grabbe E.
Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic
approach.
Radiology.
1999;
213
881-888
17 Kaiser W A. Signs in MR-Mammography. 1st ed. Berlin, Heidelberg, New York: Springer;
2007
18 American College of Radiology (ACR) .ACR BI-RADS® – MRI. In, Breast imaging reporting
and data system atlas (BI-RADS atlas). 4th ed. Reston, VA: American College of Radiology;
2003
19
Siegmann K C, Moron H U, Baur A et al.
Diagnostische Wertigkeit des Göttinger Scores zur Malignitätsvorhersage von ausschließlich
in der MRT darstellbaren Mammaläsionen.
Fortschr Röntgenstr.
2009;
181
556-563
20
Fischer D R, Baltzer P, Malich A et al.
Is the ”blooming sign” a promising additional tool to determine malignancy in MR mammography?.
Eur Radiol.
2004;
14
394-401
21
Baltzer P A, Yang F, Dietzel M et al.
Sensitivity and specificity of unilateral edema on T 2w-TSE sequences in MR-Mammography
considering 974 histologically verified lesions.
Breast J.
2010;
16
233-239
22
Dietzel M, Baltzer P A, Vag T et al.
The hook sign for differential diagnosis of malignant from benign lesions in magnetic
resonance mammography: experience in a study of 1084 histologically verified cases.
Acta Radiol.
2010;
51
137-143
23
Malich A, Fischer D R, Wurdinger S et al.
Potential MRI interpretation model: differentiation of benign from malignant breast
masses.
Am J Roentgenol.
2005;
185
964-970
24
Dietzel M, Baltzer P A, Vag T et al.
The necrosis sign in magnetic resonance-mammography: diagnostic accuracy in 1,084
histologically verified breast lesions.
Breast J.
2010;
16
603-608
25
Dietzel M, Baltzer P A, Vag T et al.
The adjacent vessel sign on breast MRI: new data and a subgroup analysis for 1,084
histologically verified cases.
Korean J Radiol.
2010;
11
178-186
26 Bland M. An Introduction to Medical Statistics. 3rd ed. Oxford: Oxford University
Press; 2000
27
Ignatiadis M, Sotiriou C.
Understanding the molecular basis of histologic grade.
Pathobiology.
2008;
75
104-111
28
Longacre T A, Ennis M, Quenneville L A et al.
Interobserver agreement and reproducibility in classification of invasive breast carcinoma:
an NCI breast cancer family registry study.
Mod Pathol.
2006;
19
195-207
29
Michaelson J S, Silverstein M, Wyatt J et al.
Predicting the survival of patients with breast carcinoma using tumor size.
Cancer.
2002;
95
713-723
30
Carlomagno C, Perrone F, Lauria R et al.
Prognostic significance of necrosis, elastosis, fibrosis and inflammatory cell reaction
in operable breast cancer.
Oncology.
1995;
52
272-277
31
Jimenez R E, Wallis T, Visscher D W.
Centrally necrotizing carcinomas of the breast: a distinct histologic subtype with
aggressive clinical behavior.
Am J Surg Pathol.
2001;
25
331-337
32
Cetintas S K, Kurt M, Ozkan L et al.
Factors influencing axillary node metastasis in breast cancer.
Tumori.
2006;
92
416-422
33
Rakha E A, El-Sayed M E, Lee A H et al.
Prognostic significance of Nottingham histologic grade in invasive breast carcinoma.
J Clin Oncol.
2008;
26
3153-3158
34
Baltzer P AT, Renz D M, Herrmann K H et al.
Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo
planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion
techniques.
Eur Radiol.
2009;
19
1612-1620
35
Mountford C, Ramadan S, Stanwell P et al.
Proton MRS of the breast in the clinical setting.
NMR Biomed.
2009;
22
54-64
36
Baltzer P A, Vag T, Dietzel M et al.
Computer-aided interpretation of dynamic magnetic resonance imaging reflects histopathology
of invasive breast cancer.
Eur Radiol.
2010;
20
1563-1571
Dr. Matthias Dietzel
Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University
Jena
Erlanger Allee 101
07740 Jena
Germany
Telefon: ++ 49/36 41/9 32 49 28
Fax: ++ 49/36 41/9 32 48 32
eMail: dietzelmatthias2@hotmail.com