RSS-Feed abonnieren
DOI: 10.1055/s-0031-1273245
© Georg Thieme Verlag KG Stuttgart · New York
Qualitative JPEG 2000 Compression in Digital Mammography – Evaluation Using 480 Mammograms of the CDMAM Phantom
Qualitative JPEG-2000-Kompression in der digitalen Mammografie – Evaluation unter Verwendung von 480 Aufnahmen des CDMAM-PhantomsPublikationsverlauf
received: 30.12.2010
accepted: 16.2.2011
Publikationsdatum:
10. Juni 2011 (online)

Zusammenfassung
Ziel: Der DICOM-Standard unterstützt sowohl die quantitative als auch die qualitative lossy-Kompression von Mammografien. Ziel dieser Studie war, die qualitative JPEG-2000-lossy-Kompression zu untersuchen und herauszufinden, inwieweit unterschiedliche Faktoren wie Objektdicke, Röntgen-Dosis und lossy-Kompressionsstufen die Bildqualität beeinflussen. Material und Methoden: Das CDMAM Phantom Artinis 3.4 wurde mit 4 verschiedenen Objektdicken und 5 verschiedenen Röntgendosis geröntgt. Die resultierenden Bilder wurden mit 10 verschiedenen Kompressionsstufen komprimiert. Die Bildqualität wurde mit dem softwareinterpolierten IQFinv-Wert ermittelt. Ergebnisse: Lossy 90 führte zu 89 % Datenreduktion, lossy 70 zu 95 % und lossy 60 zu 96 %. Bei höheren Kompressionsstufen (lossy 30) reichte die resultierende Bildqualität von 80 – 36 %, bei niedrigen Kompressionsstufen (lossy 90) von 89 – 93 %. Die Objektdicke interagierte signifikant mit der Kompressionsstufe in Bezug zur resultierenden Bildqualität: höhere Kompressionsstufen führten zu zunehmend niedrigerer Bildqualität bei ansteigenden Kompressionsstufen (p < 0,05). Schlussfolgerung: Höhere qualitative JPEG-2000-Kompressionsstufen führen lediglich zu geringer zusätzlicher Datenreduktion, während die resultierende Bildqualität nicht mehr verlässlich vorausgesagt werden kann. Faktoren, die die Bildqualität beeinflussen wie Objektdicke und Röntgendosis, sollten bei der Bildkompression berücksichtigt werden. Große Objektdicken sollten mit Vorsicht komprimiert werden, weil der Verlust an Bildqualität größer zunehmend größer wird, wenn qualitative Kompressionsalgorithmen verwendet werden.
Abstract
Purpose: The DICOM standard supports both quantitative and qualitative lossy compression of mammograms.The purpose of this study was to investigate qualitative JPEG 2000 lossy compression and how different factors such as object thickness, radiation dose, and lossy compression levels affect image quality. Materials and Methods: The CDMAM phantom Artinis 3.4 was radiographed with 4 different object thicknesses and 5 different doses. The images were compressed at 10 different compression levels. The image quality was assessed by the software interpolated IQFinv value. Results: Lossy 90 resulted in 89 % data reduction, lossy 70 in 95 % data reduction and lossy 60 in 96 % data reduction. At higher compression levels (lossy 30), the resulting image quality ranged from 80 – 36 %, and at low compression levels (lossy 90), it ranged from 89 – 93 %. The object thickness was found to significantly interact with the compression level with regard to the resulting image quality: a higher object thickness resulted in increasingly poor image quality at increasing compression levels (p < 0.05). Conclusion: Higher qualitative JPEG 2000 compression levels contribute only little additional data reduction, while the resulting image quality cannot be reliably predicted. Factors affecting image quality such as radiation dose and object thickness should be taken into account when performing image compression. Large object thicknesses should be compressed with caution because the loss of image quality is greater when intelligent data compression algorithms are used.
Key words
breast - mammography - PACS
References
- 1
Bick U, Diekmann F.
Digital mammography: what do we and what don’t we know?.
Eur Radiol.
2007;
17
1931-1942
Reference Ris Wihthout Link
- 2
Van Ongeval C.
Digital mammography for screening and diagnosis of breast cancer: an overview.
Jbr-Btr.
2007;
90
163-166
Reference Ris Wihthout Link
- 3
Kamitani T, Yabuuchi H, Soeda H et al.
Detection of masses and microcalcifications of breast cancer on digital mammograms:
comparison among hard-copy film, 3-megapixel liquid crystal display (LCD) monitors
and 5-megapixel LCD monitors: an observer performance study.
Eur Radiol.
2007;
17
1365-1371
Reference Ris Wihthout Link
- 4
Vigeland E, Klaasen H, Klingen T A et al.
Full-field digital mammography compared to screen film mammography in the prevalent
round of a population-based screening programme: the Vestfold County Study.
Eur Radiol.
2008;
18
183-191
Reference Ris Wihthout Link
- 5
Fischer U, Hermann K P, Baum F.
Digital mammography: current state and future aspects.
Eur Radiol.
2006;
16
38-44
Reference Ris Wihthout Link
- 6
Schulz-Wendtland R, Hermann K P, Wacker T et al.
Current situation and future perspectives of digital mammography.
Radiologe.
2008;
48
324-334
Reference Ris Wihthout Link
- 7
Zheng B, Sumkin J H, Good W F et al.
Applying computer-assisted detection schemes to digitized mammograms after JPEG data
compression: an assessment.
Acad Radiol.
2000;
7
595-602
Reference Ris Wihthout Link
- 8
Chan H P, Lo S C, Niklason L T et al.
Image compression in digital mammography: effects on computerized detection of subtle
microcalcifications.
Med Phys.
1996;
23
1325-1336
Reference Ris Wihthout Link
- 9
Shiao Y H, Chen T J, Chuang K S et al.
Quality of compressed medical images.
J Digit Imaging.
2007;
20
149-159
Reference Ris Wihthout Link
- 10
Slone R M, Foos D H, Whiting B R et al.
Assessment of visually lossless irreversible image compression: comparison of three
methods by using an image-comparison workstation.
Radiology.
2000;
215
543-553
Reference Ris Wihthout Link
- 11
Erickson B J.
Irreversible compression of medical images.
J Digit Imaging.
2002;
15
5-14
Reference Ris Wihthout Link
- 12
Loose R, Braunschweig R, Kotter E et al.
Compression of digital images in radiology – results of a consensus conference.
Fortschr Röntgenstr.
2009;
181
32-37
Reference Ris Wihthout Link
- 13
Koff D, Bak P, Brownrigg P et al.
Pan-Canadian Evaluation of Irreversible Compression Ratios (”Lossy” Compression) for
Development of National Guidelines.
J Digit Imaging.
2009;
22
569-578
Reference Ris Wihthout Link
- 14
Lee K H, Kim Y H, Kim B H et al.
Irreversible JPEG 2000 compression of abdominal CT for primary interpretation: assessment
of visually lossless threshold.
Eur Radiol.
2007;
17
1529-1534
Reference Ris Wihthout Link
- 15
Savcenko V, Erickson B J, Persons K R et al.
An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to
neurologic computed tomography and magnetic resonance images. Joint Photographic Experts
Group.
J Digit Imaging.
2000;
13
183-185
Reference Ris Wihthout Link
- 16
Sung M M, Kim H J, Yoo S K et al.
Clinical evaluation of compression ratios using JPEG2000 on computed radiography chest
images.
J Digit Imaging.
2002;
15
78-83
Reference Ris Wihthout Link
- 17
Kotter E, Roesner A, Torsten Winterer J et al.
Evaluation of Lossy data compression of chest X-rays: a receiver operating characteristic
study.
Invest Radiol.
2003;
38
243-249
Reference Ris Wihthout Link
- 18
Liang Z, Du X, Liu J et al.
Effects of different compression techniques on diagnostic accuracies of breast masses
on digitized mammograms.
Acta Radiol.
2008;
49
747-751
Reference Ris Wihthout Link
- 19
Penedo M, Lado M J, Tahoces P G et al.
Effects of JPEG2000 data compression on an automated system for detecting clustered
microcalcifications in digital mammograms.
IEEE Trans Inf Technol Biomed.
2006;
10
354-361
Reference Ris Wihthout Link
- 20
Suryanarayanan S, Karellas A, Vedantham S et al.
Detection of simulated lesions on data-compressed digital mammograms.
Radiology.
2005;
236
31-36
Reference Ris Wihthout Link
- 21
Wollenweber T, Freund M.
Is telemammography an option for screening programs? A phantom study.
Fortschr Röntgenstr.
2005;
177
1284-1289
Reference Ris Wihthout Link
- 22
Penedo M, Souto M, Tahoces P G et al.
Free-response receiver operating characteristic evaluation of lossy JPEG2000 and object-based
set partitioning in hierarchical trees compression of digitized mammograms.
Radiology.
2005;
237
450-457
Reference Ris Wihthout Link
- 23
Suryanarayanan S, Karellas A, Vedantham S et al.
A perceptual evaluation of JPEG 2000 image compression for digital mammography: contrast-detail
characteristics.
J Digit Imaging.
2004;
17
64-70
Reference Ris Wihthout Link
- 24
Mayo P, Rodenas F, Verdu G et al.
Study of digital mammographic equipments by phantom image quality.
Conf Proc IEEE Eng Med Biol Soc.
2006;
1
1994-1996
Reference Ris Wihthout Link
- 25
Mayo P, Rodenas F, Verdu G et al.
Analysis of digital image quality indexes for CIRS SP 01 and CDMAM 3.4 mammographic
phantoms.
Conf Proc IEEE Eng Med Biol Soc.
2008;
2008
418-421
Reference Ris Wihthout Link
- 26 Last access. http://”www.rcr.ac.uk/docs/radiology/pdf/IT_guidance_lossyApr08.pdf” 12.02.2011
Reference Ris Wihthout Link
- 27
Li Y, Poulos A, McLean D et al.
A review of methods of clinical image quality evaluation in mammography.
Eur J Radiol.
2010;
74
122-131
Reference Ris Wihthout Link
- 28
Baldelli P, Phelan N, Egan G.
A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography
detectors.
Eur Radiol.
2009;
19
2275-2285
Reference Ris Wihthout Link
- 29
Goes C E, Schiabel H, Nunes F L.
Evaluation of microcalcifications segmentation techniques for dense breast digitized
images.
J Digit Imaging.
2002;
15
231-233
Reference Ris Wihthout Link
- 30
Veldkamp W J, Kroft L J, Delft J P et al.
A technique for simulating the effect of dose reduction on image quality in digital
chest radiography.
J Digit Imaging.
2009;
22
114-125
Reference Ris Wihthout Link
- 31
Yakabe van M, Sakai S, Yabuuchi H et al.
Effect of Dose Reduction on the Ability of Digital Mammography to Detect Simulated
Microcalcifications.
J Digit Imaging.
2010;
23
520-526
Reference Ris Wihthout Link
- 32
Kropil P, Cohnen M, Andersen K et al.
Image quality in multidetector CT of paranasal sinuses: potential of dose reduction
using an adaptive post-processing filter.
Fortschr Röntgenstr.
2010;
182
973-978
Reference Ris Wihthout Link
- 33
Kropil P, Lanzman R S, Walther C et al.
Dose reduction and image quality in MDCT of the upper abdomen: potential of an adaptive
post-processing filter.
Fortschr Röntgenstr.
2010;
182
248-253
Reference Ris Wihthout Link
- 34
Nagel H D, Stumpp P, Kahn T et al.
Performance of an automatic dose control system for CT: specifications and basic phantom
tests.
Fortschr Röntgenstr.
2011;
183
60-67
Reference Ris Wihthout Link
- 35
Pfandzelter R, Wulfing U, Boedeker B et al.
Diagnostic image quality of mammograms in german outpatient medical care.
Fortschr Röntgenstr.
2010;
182
993-1000
Reference Ris Wihthout Link
- 36
Sommer A, Girnus R, Wendt B et al.
Devolvement of an objective rating system for the annual physical quality control
for digital mammography systems.
Fortschr Röntgenstr.
2010;
182
788-792
Reference Ris Wihthout Link
- 37
Marshall N W.
A comparison between objective and subjective image quality measurements for a full
field digital mammography system.
Phys Med Biol.
2006;
51
2441-2463
Reference Ris Wihthout Link
- 38
Chakrabarti K, Kaczmarek R V, Thomas J A et al.
Effect of room illuminance on monitor black level luminance and monitor calibration.
J Digit Imaging.
2003;
16
350-355
Reference Ris Wihthout Link
- 39
Blendl C, Loos C, Eiben B.
Comparison of two automatic evaluation methods on Images of the CDMAM test phantom.
Fortschr Röntgenstr.
2009;
181
637-643
Reference Ris Wihthout Link
- 40
Blendl C, Schreiber A C, Buhr H.
Results of an automatic evaluation of test images according to PAS 1054 and IEC 6220-1 – 2
on different types of digital mammographic units.
Fortschr Röntgenstr.
2009;
181
979-988
Reference Ris Wihthout Link
- 41
Sommer A, Lenzen H, Blaser D et al.
Guideline for the additional test positions according to the EPQC 4th Edition for Digital Mammography Systems.
Fortschr Röntgenstr.
2009;
181
845-850
Reference Ris Wihthout Link
- 42
Van Ongeval C, Van Steen A, Geniets C et al.
Clinical image quality criteria for full field digital mammography: a first practical
application.
Radiat Prot Dosimetry.
2008;
129
265-270
Reference Ris Wihthout Link
- 43
Thomas J A, Chakrabarti K, Kaczmarek R et al.
Contrast-detail phantom scoring methodology.
Med Phys.
2005;
32
807-814
Reference Ris Wihthout Link
- 44
Andersson I, Ikeda D M, Zackrisson S et al.
Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility
and BIRADS classification in a population of cancers with subtle mammographic findings.
Eur Radiol.
2008;
18
2817-2825
Reference Ris Wihthout Link
- 45
Diekmann F, Bick U.
Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital
mammography.
Eur Radiol.
2007;
17
3086-3092
Reference Ris Wihthout Link
- 46
Teertstra H J, Loo C E, Bosch M A et al.
Breast tomosynthesis in clinical practice: initial results.
Eur Radiol.
2010;
20
16-24
Reference Ris Wihthout Link
- 47
Bajpai van den V, Lee K H, Kim B et al.
Differences in compression artifacts on thin- and thick-section lung CT images.
Am J Roentgenol.
2008;
191
W38-W43
Reference Ris Wihthout Link
Dr. Nils F. Schreiter
Klinik für Strahlenheilkunde, Charité
Campus Virchowklinikum
13353 Berlin
Germany
Telefon: ++ 49/1 77/4 91 70 01
Fax: ++ 49/40 51 99 14
eMail: nils.schreiter@charite.de