Z Gastroenterol 2011; 49(6): 737-739
DOI: 10.1055/s-0031-1273392
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Use of Isolated Liver Perfusion in Metabolic Studies: Ground-laying Work in Experimental Hepatology

Leberperfusion für Stoffwechselstudien: grundlegende Arbeiten in Experimenteller HepatologieH. Sies1 , 2
  • 1Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Germany
  • 2College of Science, King Saud University, Riyadh, Saudi Arabia
Further Information

Publication History

manuscript received: 23.2.2011

manuscript accepted: 26.4.2011

Publication Date:
01 June 2011 (online)

Zusammenfassung

Die moderne Stoffwechselforschung in der Hepatologie verwendet nicht invasive Techniken am ganzen Organismus sowie am intakten Organ. Nach Dekaden der Zellkultur und des Studiums der Eigenschaften isolierter Zellen rückt nun die Untersuchung der räumlich-zeitlichen Organisation der verschiedenen Zelltypen in den Vordergrund unter Verwendung von Modellen intakter Organe und Gewebe. Dies betrifft besonders die Leber als das wesentliche Stoffwechselorgan. Dieser kurze Artikel illustriert Vorteile und Grenzen solcher Ansätze und fokussiert auf ausgewählte Aspekte aus dem Bereich des Stoffwechsels von Ammonium/Harnstoff und Glutamin.

Abstract

Modern metabolic research in hepatology employs non-invasive techniques of the whole organism, and it includes studying the intact organ. Following recent decades of efforts in culturing isolated cells and studying their properties separately, it has become clear that the spatiotemporal organisation of different cell types in a tissue requires studies using models of the intact organ or tissue. This applies particularly to the liver as the major organ of metabolic transformation and activity. The present brief article attempts to illustrate the advantages and limitations of such approaches, focusing on selected aspects of ammonia/urea and glutamine metabolism as an example.

References

  • 1 Sies H, Häussinger D, Grosskopf M. Mitochondrial nicotinamide nucleotide systems: ammonium chloride responses and associated metabolic transitions in hemoglobin-free perfused rat liver.  Hoppe Seylers Z Physiol Chem. 1974;  355 305-320
  • 2 Sies H. The use of perfusion of liver and other organs for the study of microsomal electron-transport and cytochrome P-450 systems.  Methods Enzymol. 1978;  52 48-59
  • 3 Häussinger D, Weiss L, Sies H. Activation of pyruvate dehydrogenase during metabolism of ammonium ions in hemoglobin-free perfused rat liver.  Eur J Biochem. 1975;  52 421-431
  • 4 Sies H, Noack G, Halder K H. Carbon-dioxide concentration and the distribution of monocarboxylate and H + ions between intracellular and extracellular spaces of hemoglobin-free perfused rat liver.  Eur J Biochem. 1973;  38 247-258
  • 5 Häussinger D, Sies H. Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver.  Eur J Biochem. 1979;  101 179-184
  • 6 Häussinger D, Akerboom T P, Sies H. The role of pH and the lack of a requirement for hydorgen carbonate in the regulation of hepatic glutamine metabolism.  Hoppe Seylers Z Physiol Chem. 1980;  361 995-1001
  • 7 Häussinger D, Gerok W, Sies H. Inhibition of pyruvate dehydrogenase during the metabolism of glutamine and proline in hemoglobin-free perfused rat liver.  Eur J Biochem. 1982;  126 69-76
  • 8 Häussinger D, Crane D, Gerok W et al. Decrease of flux through pyruvate dehydrogenase and branched-chain 2-oxo-acid dehydrogenase by nitrofurantoin in perfused rat liver.  Hoppe Seylers Z Physiol Chem. 1983;  364 1439-1446
  • 9 Häussinger D, Gerok W, Sies H. Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver.  Biochim Biophys Acta. 1983;  755 272-278
  • 10 Häussinger D, Sies H. Effect of phenylephrine on glutamate and glutamine metabolism in isolated perfused rat liver.  Biochem J. 1984;  221 651-658
  • 11 Häussinger D, Soboll S, Meijer A J et al. Role of plasma membrane transport in hepatic glutamine metabolism.  Eur J Biochem. 1985;  152 597-603
  • 12 Häussinger D, Sies H, Gerok W. Functional hepatocyte heterogeneity in ammonia metabolism. The intercellular glutamine cycle.  J Hepatol. 1985;  1 3-14
  • 13 Sies H, Summer K H, Bücher T. A process requiring mitochondrial NADPH: urea formation from ammonia.  FEBS Lett. 1975;  54 274-278
  • 14 Sies H, Summer K H. Hydroperoxide-metabolizing systems in rat liver.  Eur J Biochem. 1975;  57 503-512
  • 15 Sies H, Chance B. The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver.  FEBS Lett. 1970;  11 172-176
  • 16 Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs.  Physiol Rev. 1979;  59 527-605
  • 17 Crane D, Häussinger D, Sies H. Rise of coenzyme A-glutathione mixed disulfide during hydroperoxide metabolism in perfused rat liver.  Eur J Biochem. 1982;  127 575-578
  • 18 Crane D, Häussinger D, Graf P et al. Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver.  Hoppe Seylers Z Physiol Chem. 1983;  364 977-987
  • 19 Graf D, Haselow K, Munks I et al. Inhibition of interferon-alpha-induced signaling by hyperosmolarity and hydrophobic bile acids.  Biol Chem. 2010;  391 1175-1187
  • 20 Reinehr R, Sommerfeld A, Häussinger D. Insulin induces swelling-dependent activation of the epidermal growth factor receptor in rat liver.  J Biol Chem. 2010;  285 25 904-25 912
  • 21 Görg B, Morwinsky A, Keitel V et al. Ammonia triggers exocytotic release of L-glutamate from cultured rat astrocytes.  Glia. 2010;  58 691-705
  • 22 Reinehr R, Häussinger D. Epidermal growth factor receptor signaling in liver cell proliferation and apoptosis.  Biol Chem. 2009;  390 1033-1037
  • 23 Reinehr R, Gohlke H, Sommerfeld A et al. Activation of integrins by urea in perfused rat liver.  J Biol Chem. 2010;  285 29 348-29 356
  • 24 Schliess F, Görg B, Häussinger D. RNA oxidation and zinc in hepatic encephalopathy and hyperammonemia.  Metab Brain Dis. 2009;  24 119-134
  • 25 Keitel V, Cupisti K, Ullmer C et al. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders.  Hepatology. 2009;  50 861-870
  • 26 Keitel V, Ullmer C, Häussinger D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes.  Biol Chem. 2010;  391 785-789
  • 27 Stross C, Keitel V, Winands E et al. Expression and localization of atypical PKC isoforms in liver parenchymal cells.  Biol Chem. 2009;  390 235-244
  • 28 Görg B, Qvartskhava N, Bidmon H J et al. Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy.  Hepatology. 2010;  52 256-265
  • 29 Häussinger D, Görg B. Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity.  Curr Opin Clin Nutr Metab Care. 2010;  13 87-92
  • 30 Kordes C, Sawitza I, Häussinger D. Hepatic and pancreatic stellate cells in focus.  Biol Chem. 2009;  390 1003-1012
  • 31 Sommerfeld A, Reinehr R, Häussinger D. Bile acid-induced epidermal growth factor receptor activation in quiescent rat hepatic stellate cells can trigger both proliferation and apoptosis.  J Biol Chem. 2009;  284 22 173-22 183
  • 32 Bode J G, Brenndorfer E D, Karthe J et al. Interplay between host cell and hepatitis C virus in regulating viral replication.  Biol Chem. 2009;  390 1013-10 132
  • 33 Häussinger D, Sies H. Highlight: ‘regenerative hepatology’.  Biol Chem. 2009;  390 949-950

Prof. Dr. Helmut Sies

Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-Universität Düsseldorf

Universitätsstraße 1, Bldg 22.03

40225 Düsseldorf

Germany

Phone: ++ 49/2 11/8 11 59 56

Fax: ++ 49/2 11/8 11 59 80

Email: sies@uni-duesseldorf.de

    >