Z Gastroenterol 2011; 49(6): 728-736
DOI: 10.1055/s-0031-1273427
Kasuistik

© Georg Thieme Verlag KG Stuttgart · New York

Cholestatic Liver Diseases from Child to Adult: The Diversity of MDR3 Disease

Die Vielfalt MDR3-abhängiger LebererkrankungenR. Kubitz1 , J. Bode1 , A. Erhardt1 , D. Graf1 , G. Kircheis1 , I. Müller-Stöver1 , R. Reinehr1 , S. Reuter1 , J. Richter1 , A. Sagir1 , M. Schmitt1 , M. Donner1
  • 1Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
Further Information

Publication History

manuscript received: 9.3.2011

manuscript accepted: 11.5.2011

Publication Date:
01 June 2011 (online)

Zusammenfassung

Die Phospholipidfloppase MDR3 (Gensymbol: ABCB4) findet sich in der kanalikulären Hepatozytenmembran und mediiert die biliäre Sekretion von Phosphatidylcholin, welches für die Bildung gemischter Mizellen benötigt wird. Es sind zahlreiche Mutationen von MDR3 bekannt, die cholestatische Lebererkrankungen unterschiedlichen Schweregrads verursachen. Hierzu gehören die progressive familiäre intrahepatische Cholestase Typ 3 (PFIC-3), die intrahepatische Schwangerschaftscholestase (ICP) und das low phospholipid associated cholelithiasis Syndrom (LPAC). In dieser Arbeit berichten wir über 4 neue (S1076N; L 23Hfs16X; c.286 + 1G > A; Q 1181E) und eine bekannte (S27G) MDR3-Mutation bei 8 Patienten aus 3 Familien. Die Patienten präsentierten sich mit einem großen Spektrum an Lebererkrankungen. Die klinische Präsentation, spezifische Laborbefunde und eine richtungweisende Familienanamnese waren ausschlaggebend für die Identifikation des genetischen Hintergrunds der Erkrankungen. Die Fälle zeigen zudem, dass ein und dieselbe Mutation mit unterschiedlich starker Ausprägung und Progression der Erkrankung verbunden sein kann.

Abstract

The phospholipidfloppase MDR3 (gene symbol: ABCB4) is expressed in the canalicular membrane of hepatocytes and mediates the biliary excretion of phosphatidylcholine, which is required for the formation of mixed micelles in bile. Several mutations of ABCB4 have been identified, which cause cholestatic liver diseases of varying severity including progressive familial intrahepatic cholestasis type 3 (PFIC-3), intrahepatic cholestasis of pregnancy (ICP) and the low phospholipid associated cholelithiasis syndrome (LPAC). Here, we report on four new (S1076N; L 23Hfs16X; c.286 + 1G > A; Q 1181E) and one known (S27G) MDR3 mutations in eight patients of three families. The patients presented with a wide spectrum of liver diseases. The clinical presentation and decisive laboratory findings or the association to a trend-setting family history led to the identification of the genetic background in these patients. Even the same mutation may be associated with varying disease progression.

References

  • 1 Ujhazy P, Ortiz D, Misra S et al. Familial intrahepatic cholestasis 1: studies of localization and function.  Hepatology. 2001;  34 768-775
  • 2 Bull L N, Carlton V E, Stricker N L et al. Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): evidence for heterogeneity.  Hepatology. 1997;  26 155-164
  • 3 Bull L N, Eijk M J, Pawlikowska van L et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis.  Nat Genet. 1998;  18 219-224
  • 4 Klomp L W, Vargas J C, Mil S W et al. Characterization of mutations in ATP8B1 associated with hereditary cholestasis.  Hepatology. 2004;  40 27-38
  • 5 Tygstrup van N, Steig B A, Juijn J A et al. Recurrent familial intrahepatic cholestasis in the Faeroe Islands. Phenotypic heterogeneity but genetic homogeneity.  Hepatology. 1999;  29 506-508
  • 6 Strautnieks S S, Kagalwalla A F, Tanner M S et al. Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24.  Am J Hum Genet. 1997;  61 630-633
  • 7 Mil S W, Van Der Woerd W L, BG et al. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11.  Gastroenterology. 2004;  127 379-384
  • 8 Kubitz van R, Keitel V, Scheuring S et al. Benign recurrent intrahepatic cholestasis associated with mutations of the bile salt export pump.  J Clin Gastroenterol. 2006;  40 171-175
  • 9 Jacquemin E. Role of multidrug resistance 3 deficiency in pediatric and adult liver disease: one gene for three diseases.  Semin Liver Dis. 2001;  21 551-562
  • 10 http://www.cbs.dtu.dk/services/NetGene2/
  • 11 http://es.embnet.org/˜mwang/assp.html/
  • 12 http://www.fruitfly.org/seq_tools/splice.html/
  • 13 Smit J J, Schinkel A H, Mol C A et al. Tissue distribution of the human MDR3 P-glycoprotein.  Lab Invest. 1994;  71 638-649
  • 14 Helvoort van A, Smith A J, Sprong H et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine.  Cell. 1996;  87 507-517
  • 15 Oude Elferink R P, Paulusma C C. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein).  Pflugers Arch. 2007;  453 601-610
  • 16 Donovan J M, Jackson A A, Carey M C. Molecular species composition of inter-mixed micellar/vesicular bile salt concentrations in model bile: dependence upon hydrophilic-hydrophobic balance.  J Lipid Res. 1993;  34 1131-1140
  • 17 De Vree J M, Jacquemin E, Sturm E et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis.  Proc Natl Acad Sci USA. 1998;  95 282-287
  • 18 Deleuze J F, Jacquemin E, Dubuisson C et al. Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis.  Hepatology. 1996;  23 904-908
  • 19 Ziol M, Barbu V, Rosmorduc O et al. ABCB4 heterozygous gene mutations associated with fibrosing cholestatic liver disease in adults.  Gastroenterology. 2008;  135 131-141
  • 20 Smit J J, Schinkel A H, Oude Elferink R P et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease.  Cell. 1993;  75 451-462
  • 21 Fickert P, Fuchsbichler A, Wagner M et al. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.  Gastroenterology. 2004;  127 261-274
  • 22 Keitel V, Cupisti K, Ullmer C et al. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders.  Hepatology. 2009;  50 861-870
  • 23 Keitel V, Ullmer C, Häussinger D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes.  Biol Chem. 2010;  391 785-789
  • 24 Kawamata Y, Fujii R, Hosoya M et al. A G protein-coupled receptor responsive to bile acids.  J Biol Chem. 2003;  278 9435-9440
  • 25 Alpini G, Glaser S S, Ueno Y et al. Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion.  Gastroenterology. 1999;  116 179-186
  • 26 LeSage G, Glaser S, Alpini G. Regulation of cholangiocyte proliferation.  Liver. 2001;  21 73-80
  • 27 De Bruyne R, Van Biervliet S, Vande Velde S et al. Clinical practice: neonatal cholestasis.  Eur J Pediatr. 2011;  170 279-284
  • 28 Jacquemin E, De Vree J M, Cresteil D et al. The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood.  Gastroenterology. 2001;  120 1448-1458
  • 29 Jacquemin E, Cresteil D, Manouvrier S et al. Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy.  Lancet. 1999;  353 210-211
  • 30 Chen H L, Chen H L, Liu Y J et al. Developmental expression of canalicular transporter genes in human liver.  J Hepatol. 2005;  43 472-477
  • 31 Lammert F, Marschall H U, Glantz A et al. Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and management.  J Hepatol. 2000;  33 1012-1021
  • 32 Glantz A, Marschall H U, Mattsson L A. Intrahepatic cholestasis of pregnancy: Relationships between bile acid levels and fetal complication rates.  Hepatology. 2004;  40 467-474
  • 33 Rioseco A J, Ivankovic M B, Manzur A et al. Intrahepatic cholestasis of pregnancy: a retrospective case-control study of perinatal outcome.  Am J Obstet Gynecol. 1994;  170 890-895
  • 34 Bacq Y, Sapey T, Brechot M C et al. Intrahepatic cholestasis of pregnancy: a French prospective study.  Hepatology. 1997;  26 358-364
  • 35 Milkiewicz P, Gallagher R, Chambers J et al. Obstetric cholestasis with elevated gamma glutamyl transpeptidase: incidence, presentation and treatment.  J Gastroenterol Hepatol. 2003;  18 1283-1286
  • 36 Dixon P H, Weerasekera N, Linton K J et al. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking.  Hum Mol Genet. 2000;  9 1209-1217
  • 37 Gendrot C, Bacq Y, Brechot M C et al. A second heterozygous MDR3 nonsense mutation associated with intrahepatic cholestasis of pregnancy.  J Med Genet. 2003;  40 e32
  • 38 Wasmuth H E, Glantz A, Keppeler H et al. Intrahepatic cholestasis of pregnancy: the severe form is associated with common variants of the hepatobiliary phospholipid transporter ABCB4 gene.  Gut. 2007;  56 265-270
  • 39 Floreani A, Carderi I, Paternoster D et al. Intrahepatic cholestasis of pregnancy: three novel MDR3 gene mutations.  Aliment Pharmacol Ther. 2006;  23 1649-1653
  • 40 Pauli-Magnus C, Lang T, Meier Y et al. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy.  Pharmacogenetics. 2004;  14 91-102
  • 41 Gotthardt D, Runz H, Keitel V et al. A mutation in the canalicular phospholipid transporter gene, ABCB4, is associated with cholestasis, ductopenia, and cirrhosis in adults.  Hepatology. 2008;  48 1157-1166
  • 42 Lucena J F, Herrero J I, Quiroga J et al. A multidrug resistance 3 gene mutation causing cholelithiasis, cholestasis of pregnancy, and adulthood biliary cirrhosis.  Gastroenterology. 2003;  124 1037-1042
  • 43 Hartmann G, Kim H, Piquette-Miller M. Regulation of the hepatic multidrug resistance gene expression by endotoxin and inflammatory cytokines in mice.  Int Immunopharmacol. 2001;  1 189-199
  • 44 Trauner M, Fickert P, Wagner M. MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes.  Semin Liver Dis. 2007;  27 77-98
  • 45 Geier A, Fickert P, Trauner M. Mechanisms of disease: mechanisms and clinical implications of cholestasis in sepsis.  Nat Clin Pract Gastroenterol Hepatol. 2006;  3 574-585
  • 46 Pauli-Magnus C, Kerb R, Fattinger K et al. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis.  Hepatology. 2004;  39 779-791
  • 47 Poupon R, Ping C, Chretien Y et al. Genetic factors of susceptibility and of severity in primary biliary cirrhosis.  J Hepatol. 2008;  49 1038-1045
  • 48 Ohishi Y, Nakamura M, Iio N et al. Single-nucleotide polymorphism analysis of the multidrug resistance protein 3 gene for the detection of clinical progression in Japanese patients with primary biliary cirrhosis.  Hepatology. 2008;  48 853-862
  • 49 Keitel V, Burdelski M, Warskulat U et al. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis.  Hepatology. 2005;  41 1160-1172
  • 50 Jansen P L, Strautnieks S S, Jacquemin E et al. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis.  Gastroenterology. 1999;  117 1370-1379
  • 51 Strautnieks S S, Byrne J A, Pawlikowska L et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families.  Gastroenterology. 2008;  134 1203-1214
  • 52 Rosmorduc O, Hermelin B, Poupon R. MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis.  Gastroenterology. 2001;  120 1459-1467
  • 53 Rosmorduc O, Hermelin B, Boelle P Y et al. ABCB4 gene mutation-associated cholelithiasis in adults.  Gastroenterology. 2003;  125 452-459
  • 54 Rosmorduc O, Poupon R. Low phospholipid associated cholelithiasis: association with mutation in the MDR3 /ABCB4 gene.  Orphanet J Rare Dis. 2007;  2 29
  • 55 Shoda J, Tanaka N, Osuga T. Hepatolithiasis – epidemiology and pathogenesis update.  Front Biosci. 2003;  8 e398-e409
  • 56 Henrich B, Schmitt M, Bergmann N et al. Mycoplasma salivarium detected in a microbial community with Candida glabrata in the biofilm of an occluded biliary stent.  J Med Microbiol. 2010;  59 239-241
  • 57 Rudolph G, Gotthardt D, Kloters-Plachky P et al. Influence of dominant bile duct stenoses and biliary infections on outcome in primary sclerosing cholangitis.  J Hepatol. 2009;  51 149-155
  • 58 Kulaksiz H, Rudolph G, Kloeters-Plachky P et al. Biliary Candida infections in primary sclerosing cholangitis.  J Hepatol. 2006;  45 711-716
  • 59 Caldwell S H. Cryptogenic cirrhosis: what are we missing?.  Curr Gastroenterol Rep. 2010;  12 40-48
  • 60 Demir H, Yuce A, Caglar M et al. Cirrhosis in children with celiac disease.  J Clin Gastroenterol. 2005;  39 630-633
  • 61 Devaney K, Goodman Z D, Epstein M S et al. Hepatic sarcoidosis. Clinicopathologic features in 100 patients.  Am J Surg Pathol. 1993;  17 1272-1280
  • 62 Mayatepek E, Hoffmann B, Meissner T. Inborn errors of carbohydrate metabolism.  Best Pract Res Clin Gastroenterol. 2010;  24 607-618
  • 63 Colombo C, Battezzati P M, Crosignani A et al. Liver disease in cystic fibrosis: A prospective study on incidence, risk factors, and outcome.  Hepatology. 2002;  36 1374-1382
  • 64 Nordmann Y. Erythropoietic protoporphyria and hepatic complications.  J Hepatol. 1992;  16 4-6
  • 65 Erhardt A, Lörke J, Vogt C et al. [Transient elastography for diagnosing liver cirrhosis].  Dtsch Med Wochenschr. 2006;  131 2765-2769
  • 66 Castera L, Vergniol J, Foucher J et al. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C.  Gastroenterology. 2005;  128 343-350
  • 67 Foucher J, Chanteloup E, Vergniol J et al. Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study.  Gut. 2006;  55 403-408
  • 68 Sagir A, Erhardt A, Schmitt M et al. Transient elastography is unreliable for detection of cirrhosis in patients with acute liver damage.  Hepatology. 2008;  47 592-595
  • 69 Millonig G, Reimann F M, Friedrich S et al. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis.  Hepatology. 2008;  48 1718-1723
  • 70 Foucher J, Castera L, Bernard P H et al. Prevalence and factors associated with failure of liver stiffness measurement using FibroScan in a prospective study of 2114 examinations.  Eur J Gastroenterol Hepatol. 2006;  18 411-412
  • 71 Häussinger D, Cordoba J, Kircheis G. et al .Definition and assessment of low-grade hepatic encephalopathy. In: Häussinger D KGSF, ed. Hepatic encephalopathy and nitrogen metabolism.. Dordrecht, The Netherlands: Springer; 2006: 423-432
  • 72 Kircheis G, Wettstein M, Timmermann L et al. Critical flicker frequency for quantification of low-grade hepatic encephalopathy.  Hepatology. 2002;  35 357-366
  • 73 Montoliu C, Piedrafita B, Serra M A et al. Activation of soluble guanylate cyclase by nitric oxide in lymphocytes correlates with minimal hepatic encephalopathy in cirrhotic patients.  J Mol Med. 2007;  85 237-245
  • 74 Sharma P, Sharma B C, Puri V et al. Critical flicker frequency: diagnostic tool for minimal hepatic encephalopathy.  J Hepatol. 2007;  47 67-73
  • 75 Poupon R E, Poupon R, Balkau B. Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group.  N Engl J Med. 1994;  330 1342-1347
  • 76 Kurz A K, Graf D, Schmitt M et al. Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats.  Gastroenterology. 2001;  121 407-419
  • 77 Kubitz R, Sütfels G, Kühlkamp T et al. Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP Kinase.  Gastroenterology. 2004;  126 541-553
  • 78 Beuers U, Throckmorton D C, Anderson M S et al. Tauroursodeoxycholic acid activates protein kinase C in isolated rat hepatocytes.  Gastroenterology. 1996;  110 1553-1563
  • 79 Beuers U, Bilzer M, Chittattu A et al. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver.  Hepatology. 2001;  33 1206-1216
  • 80 Kubitz R, Warskulat U, Schmitt M et al. Dexamethasone- and osmolarity-dependent expression of the multidrug-resistance protein 2 in cultured rat hepatocytes.  Biochem J. 1999;  340 (Pt 3) 585-591
  • 81 Koopen N R, Wolters H, Havinga R et al. Impaired activity of the bile canalicular organic anion transporter (Mrp2 /cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat.  Hepatology. 1998;  27 537-545
  • 82 Kubitz R, Urso D, Keppler D et al. Osmodependent dynamic localization of the multidrug resistance protein 2 in the rat hepatocyte canalicular membrane.  Gastroenterology. 1997;  113 1438-1442
  • 83 Schmitt M, Kubitz R, Lizun S et al. Regulation of the dynamic localization of the rat Bsep gene-encoded bile salt export pump by anisoosmolarity.  Hepatology. 2001;  33 509-518
  • 84 Hallbrucker C, Lang F, Gerok W et al. Cell swelling increases bile flow and taurocholate excretion into bile in isolated perfused rat liver.  Biochem J. 1992;  281 (Pt 3) 593-595
  • 85 Häussinger D, Kurz A K, Wettstein M et al. Involvement of integrins and Src in tauroursodeoxycholate-induced and swelling-induced choleresis.  Gastroenterology. 2003;  124 1476-1487
  • 86 Häussinger D, Hallbrucker C, Saha N et al. Cell volume and bile acid excretion.  Biochem J. 1992;  288 (Pt 2) 681-689
  • 87 Huang L, Zhao A, Lew J L et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3.  J Biol Chem. 2003;  278 51085-51090
  • 88 Liu Y, Binz J, Numerick M J et al. Hepatoprotection by the farnesoid X receptor agonist GW 4064 in rat models of intra- and extrahepatic cholestasis.  J Clin Invest. 2003;  112 1678-1687
  • 89 Chianale J, Vollrath V, Wielandt A M et al. Fibrates induce mdr2 gene expression and biliary phospholipid secretion in the mouse.  Biochem J. 1996;  314 (Pt 3) 781-786
  • 90 Kok T, Bloks V W, Wolters H et al. Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of Mdr2 expression and function in mice.  Biochem J. 2003;  369 539-547
  • 91 Roglans N, Vazquez-Carrera M, Alegret M et al. Fibrates modify the expression of key factors involved in bile-acid synthesis and biliary-lipid secretion in gallstone patients.  Eur J Clin Pharmacol. 2004;  59 855-861
  • 92 Shoda J, Okada K, Inada Y et al. Bezafibrate induces multidrug-resistance P-Glycoprotein 3 expression in cultured human hepatocytes and humanized livers of chimeric mice.  Hepatol Res. 2007;  37 548-556
  • 93 Shoda J, Inada Y, Tsuji A et al. Bezafibrate stimulates canalicular localization of NBD-labeled PC in HepG2 cells by PPARalpha-mediated redistribution of ABCB4.  J Lipid Res. 2004;  45 1813-1825
  • 94 Nagasaka H, Yorifuji T, Hirano K et al. Effects of bezafibrate on dyslipidemia with cholestasis in children with familial intrahepatic cholestasis-1 deficiency manifesting progressive familial intrahepatic cholestasis.  Metabolism. 2009;  58 48-54

Prof. Dr. Ralf Kubitz

Klinik für Gastroenterologie, Hepatologie und Infektiologie, Heinrich-Heine-Universität Düsseldorf

Moorenstr. 5

40225 Düsseldorf

Phone: ++ 49/2 11/8 11 96 48

Phone: ++ 49/211/8 11 75 17

Email: Kubitz@med.uni-duesseldorf.de

    >