Lernziele
Der Leser sollte nach dem Durcharbeiten des Artikels
-
die Hauptkomponenten dentaler Komposite und Dentinadhäsive kennen,
-
Gründe für die Relevanz der Analyse der Biokompatibilität dentaler Komposite benennen,
-
die biologische Wirkung dentaler Monomere in vivo diskutieren können,
-
die Relevanz von oxidativem Stress für zytotoxische Effekte dentaler Monomere verstehen
und
-
Grundzüge der möglichen Wirkung dentaler Monomere auf die Physiologie von Zellen des
Dentin-Pulpa-Komplexes skizzieren können.
Literatur
- 1
Dauvillier BS, Aarnts MP, Feilzer AJ.
Developments in shrinkage control of adhesive restoratives.
J Esthet Dent.
2000;
12
291-299
- 2
Demirci M, Hiller KA, Bosl C et al..
The induction of oxidative stress, cytotoxicity, and genotoxicity by dental adhesives.
Dent Mater.
2008;
24
362-371
- 3
Durner J, Kreppel H, Zaspel J et al..
The toxicokinetics and distribution of 2-hydroxyethyl methacrylate in mice.
Biomaterials.
2009;
30
2066-2071
- 4
Durner J, Spahl W, Zaspel J et al..
Eluted substances from unpolymerized and polymerized dental restorative materials
and their Nernst partition coefficient.
Dent Mater.
2010;
26
91-99
- 5
Eick JD, Byerley TJ, Chappell RP et al..
Properties of expanding SOC/epoxy copolymers for dental use in dental composites.
Dent Mater.
1993;
9
123-127
- 6
Ferracane JL, Cooper PR, Smith AJ.
Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration?.
Odontology.
2010;
98
2-14
- 7
Ferracane JL.
Developing a more complete understanding of stresses produced in dental composites
during polymerization.
Dent Mater.
2005;
21
36-42
- 8
Ferracane JL.
Resin composite-State of the art.
Dent Mater.
DOI: 10.1016/j.dental
2010;
10
020
- 9
Fleisch AF, Sheffield PE, Chinn C et al..
Bisphenol A and related compounds in dental materials.
Pediatrics.
2010;
126
760-768
- 10
Freidig A, Hofhuis M, Van Holstijn I et al..
Glutathione depletion in rat hepatocytes: a mixture toxicity study with alpha, beta-unsaturated
esters.
Xenobiotica.
2001;
31
295-307
- 11
Galler KM, Schweikl H, Hiller KA et al..
TEGDMA reduces mineralization in dental pulp cells.
J Dent Res.
DOI: 10.1177/0022034510384618
[Epub ahead of print]
2010;
- 12
Geukens S, Goossens A.
Occupational contact allergy to (meth)acrylates.
Contact Dermatitis.
2001;
44
153-159
- 13
Geurtsen W, Leyhausen G.
Chemical-biological interactions of the resin monomer triethyleneglycol-dimethacrylate
(TEGDMA).
J Dent Res.
2001;
80
2046-2050
- 14
Goldberg M, Smith AJ.
Cells and extracellular matrices of dentin and pulp: a biological basis for repair
and tissue engineering.
Crit Rev Oral Biol Med.
2004;
15
13-27
- 15
Hanks CT, Strawn SE, Wataha JC et al..
Cytotoxic effects of resin components on cultured mammalian fibroblasts.
J Dent Res.
1991;
70
1450-1455
- 16
Ilie N, Hickel R.
Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based
composites.
Dent Mater.
2009;
25
810-819
- 17
Kermanshahi S, Santerre JP, Cvitkovitch et al..
Biodegradation of resin-dentin interfaces increases bacterial microleakage.
J Dent Res.
2010;
89
996-1001
- 18
Krifka S, Seidenader C, Hiller KA et al..
The generation of oxidative stress and cytotoxicity by modern dental composites.
Clin Oral Invest 2011.
[Epub ahead of print]
- 19
Marquardt W, Seiss M, Hickel R et al..
Volatile methacrylates in dental practices.
J Adhes Dent.
2009;
11
101-107
- 20
Michelsen VB, Moe G, Strøm MB et al..
Quantitative analysis of TEGDMA and HEMA eluted into saliva from two dental composites
by use of GC/MS and tailor-made internal standards.
Dent Mater.
2008;
24
724-731
- 21
Noda M, Wataha JC, Kaga M et al..
Components of dentinal adhesives modulate heat shock protein 72 expression in heat-stressed
THP-1 human monocytes at sublethal concentrations.
J Dent Res.
2002;
81
265-269
- 22
Peutzfeldt A.
Resin composites in dentistry: the monomer systems.
Eur J Oral Sci.
1997;
105
97-116
- 23
Qin C, Baba O, Butler WT.
Post-translational modifications of sibling proteins and their roles in osteogenesis
and dentinogenesis.
Crit Rev Oral Biol Med.
2004;
15
126-136
- 24
Reichl FX, Durner J, Hickel R et al..
Uptake, clearance and metabolism of TEGDMA in guinea pigs.
Dent Mater.
2002;
18
581-589
- 25
Reichl FX, Seiss M, Buters J et al..
Expression of CYP450-2E1 and formation of 2,3-epoxymethacrylic acid (2,3-EMA) in human
oral cells exposed to dental materials.
Dent Mater.
2010;
26
1151-1156
- 26
Samuelsen JT, Kopperud HM, Holme JA et al..
Role of thiol-complex formation in 2-hydroxyethyl- methacrylate-induced toxicity in
vitro.
J Biomed Mater Res A.
2011;
96
395-401
- 27 Schmalz G. Komposit-Kunststoffe. In: Schmalz G, Arenholt-Bindslev D, (Hrsg.) Biokompatibilität
zahnärztlicher Werkstoffe. München: Elsevier-Urban & Fischer; 2005: 99-132
- 28
Schweikl H, Schmalz G.
Triethylene glycol dimethacrylate induces large deletions in the hprt gene in V79
cells.
Mutation Res.
1999;
438
71-78
- 29
Schweikl H, Spagnuolo G, Schmalz G.
Genetic and cellular toxicology of dental resin monomers.
J Dent Res.
2006;
85
870-877
- 30
Smith AJ, Cassidy N, Perry H et al..
Reactionary dentinogenesis.
Int J Dev Biol.
1995;
39
273-280
- 31 Technische Regeln für Gefahrstoffe (TRGS). TRGS 900 – Arbeitsplatzgrenzwerte. Im
Internet: http://www.umwelt-online.de/regelwerk/t_regeln/trgs/trgs900/mak_ges.htm Stand Januar/2006
- 32
Watson WH, Chen Y, Jones DP.
Redox state of glutathione and thioredoxin in differentiation and apoptosis.
Biofactors.
2003;
17
307-314
- 33
Weinmann W, Thalacker C, Guggenberger R.
Siloranes in dental composites.
Dent Mater.
2005;
21
68-74
- 34
Yoshii E.
Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures
and cytotoxicity.
J Biomed Mater Res.
1997;
37
517-524
Korrespondenzadresse
Prof. Helmut Schweikl
Poliklinik für Zahnerhaltung und Parodontologie Universitätsklinikum Regensburg
Franz-Josef-Strauss-Allee 11
93042 Regensburg
Email: helmut.schweikl@klinik.uni-regensburg.de