Horm Metab Res 2011; 43(7): 494-499
DOI: 10.1055/s-0031-1277228
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Inhibitory Effects of Ghrelin on Sexual Behavior: Role of the Peptide in the Receptivity Reduction Induced by Food Restriction in Mice

M. L. Bertoldi1 , E. M. Luque1 , V. P. Carlini1 , L. M. Vincenti1 , G. Stutz1 , M. E. Santillán1 , R. D. Ruiz1 , M. Fiol de Cuneo1 , A. C. Martini1
  • 1Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
Further Information

Publication History

received 23.02.2011

accepted 27.04.2011

Publication Date:
10 June 2011 (online)

Abstract

Ghrelin (Ghr) is a gut/hypothalamus peptide with inhibitory actions on reproductive physiology; however, there are no previous reports of its role on estrous behavior. Under the hypothesis that the increase of plasma Ghr during food restriction (FR) is responsible for receptivity reduction, we intended to evaluate the receptivity percentage of female mice subjected to: exp. 1) acute and chronic FR and Ghr administration (3 nmol/animal/day, s. c.) and exp. 2) the co-administration of a ghrelin antagonist [ant=(d-Lys3)-GHRP-6; 6 nmol/animal/day s. c.]. All females were ovariectomized, primed with steroids, trained, and randomly subjected every week to each one of several protocols, followed by a behavioral test. Experiment 1 (n=8): basal, no treatment; acute FR (aFR), 24-h fasting; chronic FR (cFR), 50% FR for 5 days; acute ghrelin (aGhr), Ghr 30 min before test and chronic ghrelin (cGhr), Ghr for 5 days. Except for cGhr, all treatments significantly decreased the percentage of receptivity (mean±SEM): basal 61.9±6.0, aFR 33.1±8.1, cFR 18.8±7.7, aGhr 45.6±10.6, p<0.05 vs. basal. In exp. 2 (n=11), except for cFR+ant (55.0±6.4) the co-administration of the antagonist reversed the deleterious effects detected in exp. 1: basal 70.9±5.4; aFR+ant 72.3±7.6; aGhr+ant 73.6±4.7. As expected, the administration of vehicle or antagonist alone did not modify receptivity. Besides, we found a significant correlation between percentage of body weight loss and percentage of receptivity reduction (r=0.62, p=0.0004). This is the first study demonstrating that ghrelin is able to inhibit female mice sexual behavior and that is involved, at least in part, in receptivity reduction after food scarcity.

References

  • 1 Schneider JE. Energy balance and reproduction.  Physiol Behav. 2004;  81 289-317
  • 2 I’Anson H, Foster DL, Foxcroft GR, Booth PJ. Nutrition and Reproduction.  Oxf Rev Reprod Biol. 1991;  13 239-311
  • 3 Schneider JE, Wade GN. Decreased availability of metabolic fuels induces anestrous in Syriam hamsters.  Am J Physiol Regulatory Integrative Comp Physiol. 1990;  258 750-755
  • 4 Temple JL, Schneider JE, Scott DK, Korutz A, Rissman EF. Mating behavior is controlled by acute changes in metabolic fuels.  Am J Physiol Regulatory Integrative Comp Physiol. 2002;  282 782-790
  • 5 Wade GN. Energy balance, effects on reproduction. In: Knobil E, Neill JD (eds). Encyclopedia of Reproduction San Diego: Academic Press; 1999: 1091-1100
  • 6 Gill CJ, Rissman EF. Female sexual behavior is inhibited by short- and long-term food restriction.  Physiol Behav. 1997;  61 387-394
  • 7 Pierce AA, Ferkin MH. Re-feeding and restoration of odor attractivity, odor preference, and sexual receptivity in food-deprived female meadow voles.  Physiol Behav. 2005;  84 553-561
  • 8 Temple JL, Rissman EF. Brief refeeding restores reproductive readiness in food-restricted female musk shrews (Suncus murinus).  Horm Behav. 2000;  38 21-28
  • 9 Jones JE, Lubbers LS. Suppression and recovery of estrous behavior in Syriam hamsters after changes in metabolic fuel availability.  Am J Physiol Regul Integr Comp Physiol. 2001;  280 1393-1398
  • 10 Jones JE, Wade GN. Acute fasting decreases sexual receptivity and neural estrogen receptor-alpha in female rats.  Physiol Behav. 2002;  77 19-25
  • 11 Li HY, Wade GN, Blaustein JD. Manipulations of metabolic fuel availability alter estrous behavior and neural estrogen receptor immunoreactivity in Syrian hamsters.  Endocrinology. 1994;  135 240-247
  • 12 Kojima M, Kangawa K. Ghrelin: structure and function.  Physiol Rev. 2005;  85 495-522
  • 13 Tena-Sempere M. Ghrelin as a pleiotrophic modulator of gonadal function and reproduction.  Nat Clin Pract Endocrinol Metab. 2008;  4 666-674
  • 14 Fernández-Fernández R, Martini AC, Navarro VM, Castellano JM, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M. Novel signals for the integration of energy balance and reproduction.  Mol Cell Endocrinol. 2006;  254–255 127-132
  • 15 Tena-Sempere M. Ghrelin and reproduction: ghrelin as novel regulator of the gonadotropic axis.  Vitam Horm. 2008;  77 285-300
  • 16 Vulliémoz NR, Xiao E, Xia-Zhang L, Rivier J, Ferin M. Astressin B, a nonselective corticotropin-releasing hormone receptor antagonist, prevents the inhibitory effect of ghrelin on luteinizing hormone pulse frequency in the ovariectomized rhesus monkey.  Endocrinology. 2008;  149 869-874
  • 17 Fernández-Fernández R, Tena-Sempere M, Navarro VM, Barreiro ML, Castellano JM, Aguilar E, Pinilla L. Effects of ghrelin upon gonadotropin-releasing hormone and gonadotropin secretion in adult female rats: in vivo and in vitro studies.  Neuroendocrinology. 2005;  82 245-255
  • 18 Forbes S, Li XF, Kinsey-Jones J, O’Byrne K. Effects of ghrelin on kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinizing hormone secretion in the female rat.  Neurosci Lett. 2009;  460 143-147
  • 19 Wagner C, Caplan SR, Tannenbaum GS. Interactions of ghrelin signaling pathways with the GH neuroendocrine axis: a new and experimentally tested model.  J Mol Endocrinol. 2009;  43 105-119
  • 20 Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschöp MH, Horvath TL. Ghrelin controls hippocampal spine synapse density and memory performance.  Nat Neurosci. 2006;  9 381-388
  • 21 Szczepankiewicz D, Skrzypski M, Pruszynska-Oszmalek E, Zimmermann D, Andralojc K, Kaczmarek P, Wojciechowicz T, Sassek M, Novak KW. Inportance of ghrelin in hypothalamus-pituitary axis on growth hormone release during normal pregnancy in the rat.  J Physiol Pharmacol. 2010;  61 443-449
  • 22 Cherry JA. Measurements of sexual behavior: controls for variables. In: Conn PM (ed). Methods in neurosciences Vol 14: Paradigms for the study of behavior. San Diego: Academic Press; 1993: 3-15
  • 23 Ogawa S, Chan J, Chester AE, Gustafsson JA, Korach KS, Pfaff DW. Survival of reproductive behaviors in estrogen receptor β gene-deficient (βERKO) male and female mice.  Proc Natl Acad Sci USA. 1999;  96 12887-12892
  • 24 Ogawa S, Eng V, Taylor J, Lubahn DB, Korach KS, Pfaff DW. Roles of estrogen receptor-α gene expression in reproduction-related behaviors in female mice.  Endocrinology. 1998;  139 5070-5081
  • 25 Carlini VP, Martini AC, Schiöth HB, Ruiz RD, Fiol de Cuneo M, R de Barioglio S. Decreased memory for novel object recognition in chronically food-restricted mice is reversed by acute ghrelin administration.  Neuroscience. 2008;  153 929-934
  • 26 Shah SN, Nyby JG. Ghrelin's quick inhibition of androgen-dependent behaviors of male house mice (Mus musculus).  Horm Behav. 2010;  57 291-296
  • 27 Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents.  Nature. 2000;  407 908-913
  • 28 Johansson A, Fredriksson R, Winnergren S, Hulting AL, Schiöth HB, Lindblom J. The relative impact of chronic food restriction and acute food deprivation on plasma hormone levels and hypothalamic neuropeptide expression.  Peptides. 2008;  29 1588-1595
  • 29 DeCatanzaro D, Knipping RP, Gorzalka BB. Antagonism of estrogen-induced lordosis by corticosterone in adrenalectomizad-ovariectomized female rats and mice.  Pharmacol Biochem Behav. 1981;  15 761-766
  • 30 Yoon H, Chung WS, Park YY, Cho IH. Effects of stress on female rat sexual function.  Int J Impot Res. 2005;  17 33-38
  • 31 Coiro V, Saccani-Jotti G, Rubino P, Manfredi G, Melani A, Chiodera P. Effects of ghrelin on circulating neuropeptide Y levels in humans.  Neuro Endocrinol Lett. 2006;  27 755-757
  • 32 Kohno D, Suyama S, Yada T. Leptin transiently antagonizes ghrelin and long-lasting orexin in regulation of Ca2+ signaling in neuropeptide Y neurons of the arcuate nucleus.  World J Gastroenterol. 2008;  14 6347-6354
  • 33 Gayle DA, Desai M, Casillas E, Beloosesky R, Ross MG. Gender-specific orexigenic and anorexigenic mechanisms in rats.  Life Sci. 2006;  79 1531-1536

Correspondence

A. C. MartiniPhD 

Instituto de Fisiología

Facultad de Ciencias Médicas

Universidad Nacional de

Córdoba

Santa Rosa 1085

X5000ESU Córdoba

Argentina

Phone: +54/351/433 2019

Fax: +54/351/433 2019

Email: acmartini2000@yahoo.com

    >