Informationen aus Orthodontie & Kieferorthopädie 2011; 43(02): 131-138
DOI: 10.1055/s-0031-1279774
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

Langzeitveränderungen in den Dimensionen der pharyngealen Atempassage nach Aktivator-Headgear-Therapie und nachfolgender Behandlung mit festsitzenden Apparaturen[*]

Long-Term Changes in Pharyngeal Airway Dimensions Following Activator-Headgear and Fixed Appliance Treatment
M. P. Hänggi
1   Klinik für Kieferorthopädie und Kinderzahnmedizin, ZZM, Universität Zürich, Schweiz
,
U. M. Teuscher
1   Klinik für Kieferorthopädie und Kinderzahnmedizin, ZZM, Universität Zürich, Schweiz
,
M. Roos
2   Institut für Sozial- und Präventivmedizin, Abteilung für Biostatistik, Universität Zürich, Schweiz
,
T. A. Peltomäki
1   Klinik für Kieferorthopädie und Kinderzahnmedizin, ZZM, Universität Zürich, Schweiz
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
06. Juli 2011 (online)

Zusammenfassung

Ziel der vorliegenden Untersuchung war es, die Veränderungen der pharyngealen Atempassage bei heranwachsenden Kindern und Jugendlichen zu beurteilen und diese mit einer Gruppe von Kindern zu vergleichen, bei denen eine Klasse-II-Behandlung mit einer Aktivator-Headgear-Kombination durchgeführt worden war. Die Stichprobe bestand aus insgesamt 64 Probanden (32 männlich, 32 weiblich). 32 davon waren mindestens 9 Monate lang mit einer kombinierten Aktivator-Headgear-Apparatur behandelt worden (Untersuchungsgruppe), woran sich bei der Mehrzahl der Patienten eine Behandlung mit festsitzenden Apparaturen anschloss. In der anderen Gruppe waren nur geringfügige kieferorthopädische Behandlungsmaßnahmen durchgeführt worden (Kontrollgruppe). Vor Beginn der Behandlung (T1, durchschnittliches Alter 10,4 Jahre), am Ende der aktiven Behandlungsphase (T2, durchschnittliches Alter 14,5 Jahre) und am Ende der Nachsorgephase (T3, Durchschnittsalter 22,1 Jahre) angefertigte Fernröntgenseitenaufnahmen wurden durchgezeichnet und digitalisiert. Um den Einfluss des Körperwachstums beurteilen zu können, wurden auch Messungen der Körperlänge einbezogen. Die Unterschiede zwischen beiden Gruppen wurden mithilfe eines Zweistichproben-t-Tests herausgearbeitet.

Abstract

The aim of this study was to evaluate changes in the pharyngeal airway in growing children and adolescents and to compare these with a group of children who received activator-headgear Class II treatment. The sample consisted of 64 children (32 males and 32 females), 32 had a combined activator-headgear appliance for at least 9 months (study group) followed by fixed appliance therapy in most patients, while the other half received only minor orthodontic treatment (control group). Lateral cephalograms before treatment (T1, mean age 10.4 years), at the end of active treatment (T2, mean age 14.5 years), and at the long-term follow-up (T3, mean age 22.1 years) were traced and digitized. To reveal the influence of somatic growth, body height measurements were also taken into consideration. A 2 sample t-test was applied in order to determine differences between the groups.

At T1, the study group had a smaller pharynx length (P=0.030) and a greater ANB angle (P<0.001) than the controls. The pharyngeal area and the smallest distance between the tongue and the posterior pharyngeal wall also tended to be smaller in the study group. During treatment (T1–T2), significant growth differences between the 2 groups were present: the study group had a greater reduction in ANB (P<0.001) and showed a greater increase in pharyngeal area (P=0.007), pharyngeal length (P<0.001) and the smallest distance between the tongue and the posterior pharyngeal wall (P=0.038). At T2, the values for the study group were similar to those of the control group and remained stable throughout the posttreatment interval (T2–T3).

Activator-headgear therapy has the potential to increase pharyngeal airway dimensions, such as the smallest distance between the tongue and the posterior pharyngeal wall or the pharyngeal area.

Importantly, this increase seems to be maintained long term, up to 22 years on average in the present study. This benefit may result in a reduced risk of developing long-term impaired respiratory function.

*

* Der Artikel wurde im englischen Original veröffentlicht im Eur J Orthod 32(2010): 607–613, Oxford University Press, im Namen der European Orthodontic Society.


 
  • Literatur

  • 1 Abu Allhaija ES, Al-Khateeb SN. Uvulo-glosso-pharyngeal dimensions in different anteroposterior skeletal patterns. Angle Orthod 2005; 75 (06) 1012-1018
  • 2 Achilleos S, Krogstad O, Lyberg T. Surgical mandibular advancement and changes in uvuloglossopharyngeal morphology and head posture: a short- and long-term cephalometric study in males. Eur J Orthod 2000; 22 (04) 367-381
  • 3 Adachi S, Lowe AA, Tsuchiya M et al. Genioglossus muscle activity and inspiratory timing in obstructive sleep apnea. Am J Orthod Dentofacial Ortho 1993; 104 (02) 138-145
  • 4 Avrahami E, Englender M. Relation between CT axial cross-sectional area of the oropharynx and obstructive sleep apnea syndrome in adults. Am J Neuroradiol 1995; 16 (01) 135-140
  • 5 Bar A, Tarasiuk A, Segev Y et al. The effect of adenotonsillectomy on serum insulin-like growth factor-I and growth in children with obstructive sleep apnea syndrome. J Pediatr 1999; 135 (01) 76 -80
  • 6 Bates CJ, McDonald JP. The relationship between severity of obstructive sleep apnoea/hypopnoea syndrome (OSAHS) and lateral cephalometric radiograph values: a clinical diagnostic tool. Surgeon 2005; 3 (05) 338-346
  • 7 Battagel JM, L′Estrange PR. The cephalometric morphology of patients with obstructive sleep apnoea (OSA). Eur J Orthod 1996; 18 (06) 557-569
  • 8 Battagel JM, Johal A, L’Estrange PR et al. Changes in airway and hyoid position in response to mandibular protrusion in subjects with obstructive sleep apnoea (OSA). Eur J Orthod 1999; 21 (04) 363-376
  • 9 Battagel JM, Johal A, Kotecha B. A cephalometric comparison of subjects with snoring and obstructive sleep apnoea. Eur J Orthod 2000; 22 (04) 353-365
  • 10 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1 (8476) 307-310
  • 11 Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999; 8 (02) 135-160
  • 12 Bloch KE, Iseli A, Zhang JN et al. A randomized, controlled crossover trial of two oral appliances for sleep apnea treatment. Am J Respir Crit Care Med 2000; 162 (01) 246-251
  • 13 Ceylan I, Oktay H. A study on the pharyngeal size in different skeletal patterns. Am J Orthod Dentofacial Orthop 1995; 108 (01) 69-75
  • 14 Contencin P, Guilleminault C, Manach Y. Long-term follow-up and mechanisms of obstructive sleep apnea (OSA) and related syndromes through infancy and childhood. Int J Pediatr Otorhinolaryngol 2003; 67 (Suppl. 01) S119-123
  • 15 Finkelstein Y, Wexler D, Horowitz E et al. Frontal and lateral cephalometry in patients with sleep-disordered breathing. Laryngoscope 2001; 111 (4 Pt. 1) 634-641
  • 16 Franchi L, Baccetti T, Stahl F et al. Thin-plate spline analysis of craniofacial growth in Class I and Class II subjects. Angle Orthod 2007; 77 (04) 595-601
  • 17 Friberg D. Heavy snorer′s disease: a progressive local neuropathy. Acta Otolaryngol 1999; 119 (08) 925-933
  • 18 Guilleminault C, Eldridge FL, Simmons FB et al. Sleep apnea in eight children. Pediatrics 1976; 58 (01) 23-30
  • 19 Johnston CD, Richardson A. Cephalometric changes in adult pharyngeal morphology. Eur J Orthod 1999; 21 (04) 357-362
  • 20 Kirjavainen M, Kirjavainen T. Upper airway dimensions in Class II malocclusion. Effects of headgear treatment. Angle Orthod 2007; 77 (06) 1046-1053
  • 21 Kühnel TS, Schurr C, Wagner B et al. Morphological changes of the posterior airway space after tongue base suspension. Laryngoscope 2005; 115 (03) 475-480
  • 22 Launois SH, Feroah TR, Campbell WN et al. Site of pharyngeal narrowing predicts outcome of surgery for obstructive sleep apnea. Am Rev Respi Dis 1993; 147 (01) 182-189
  • 23 Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45 (01) 255-268
  • 24 Lowe AA, Santamaria JD, Fleetham JA et al. Facial morphology and obstructive sleep apnea. Am J Orthod Dentofacial Orthop 1986; 90 (06) 484-491
  • 25 Lowe AA, Gionhaku N, Takeuchi K et al. Three-dimensional CT reconstructions of tongue and airway in adult subjects with obstructive sleep apnea. Am J Orthod Dentofacial Orthop 1986; 90 (05) 364-374
  • 26 Lowe AA, Fleetham JA, Adachi S et al. Cephalometric and computed tomographic predictors of obstructive sleep apnea severity. Am J Orthod Dentofacial Orthop 1995; 107 (06) 589-595
  • 27 Lugaresi E, Plazzi G. Heavy snorer disease: from snoring to the sleep apnea syndrome--an overview. Respiration 1997; 64 (Suppl. 01) 11-14
  • 28 Lux CJ, Burden D, Conradt C et al. Age-related changes in sagittal relationship between the maxilla and mandible. Eur J Orthod 2005; 27 (06) 568-578
  • 29 Malkoc S, Usumez S, Nur M et al. Reproducibility of airway dimensions and tongue and hyoid positions on lateral cephalograms. Am J Orthod Dentofacial Orthop 2005; 128 (04) 513-516
  • 30 Marklund M, Stenlund H, Franklin KA. Mandibular advancement devices in 630 men and women with obstructive sleep apnea and snoring: tolerability and predictors of treatment success. Chest 2004; 125 (04) 1270-1278
  • 31 Martin SE, Mathur R, Marshall I et al. The effect of age, sex, obesity and posture on upper airway size. Eur Respir J 1997; 10 (09) 2087-2090
  • 32 Mathur R, Douglas NJ. Family studies in patients with the sleep apnea-hypopnea syndrome. Ann Intern Med 1995; 122 (03) 174 -178
  • 33 McNamara Jr JA. A method of cephalometric evaluation. Am J Orthod 1984; 86 (06) 449-469
  • 34 Morrison DL, Launois SH, Isono S et al. Pharyngeal narrowing and closing pressures in patients with obstructive sleep apnea. Am Rev Respir Dis 1993; 148 (03) 606-611
  • 35 Nieminen P, Löppönen T, Tolonen U et al. Growth and biochemical markers of growth in children with snoring and obstructive sleep apnea. Pediatrics 2002; 109 (04) e55
  • 36 Ono T, Otsuka R, Kuroda T et al. Effects of head and body position on two- and three-dimensional configurations of the upper airway. J Dent Res 2000; 79 (11) 1879-1884
  • 37 Ozbek MM, Memikoglu TU, Gögen H et al. Oropharyngeal airway dimensions and functional-orthopedic treatment in skeletal Class II cases. Angle Orthod 1998; 68 (04) 327-336
  • 38 Pae EK, Lowe AA, Sasaki K et al. A cephalometric and electromyographic study of upper airway structures in the upright and supine positions. Am J Orthod Dentofacial Orthop 1994; 106 (01) 52-59
  • 39 Schwab RJ, Pasirstein M, Kaplan L et al. Family aggregation of upper airway soft tissue structures in normal subjects and patients with sleep apnea. Am J Respir Crit Care Med 2006; 173 (04) 453-463
  • 40 Smith AM, Battagel JM. Non-apneic snoring and the orthodontist: radiographic pharyngeal dimension changes with supine posture and mandibular protrusion. J Orthod 2004; 31 (02) 124-131
  • 41 Späth-Schwalbe E, Hundenborn C, Kern W et al. Nocturnal wakefulness inhibits growth hormone (GH)-releasing hormone-induced GH secretion. J Clin Endocrinol Metab 1995; 80 (01) 214-219
  • 42 Steiger A. Sleep and the hypothalamo-pituitary-adrenocortical system. Sleep Med Rev 2002; 6 (02) 125-138
  • 43 Teuscher U. A growth-related concept for skeletal class II treatment. Am J Orthod 1978; 74 (03) 258-275
  • 44 Vogl C, Atchley WR, Cowley DE et al. The epigenetic influence of growth hormone on skeletal development. Growth Dev Aging 1993; 57 (03) 163-182
  • 45 Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 2002; 165 (09) 1217-1239