Z Gastroenterol 2012; 50(1): 47-56
DOI: 10.1055/s-0031-1282002
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Das hepatozelluläre Karzinom – von der Immunbiologie zur Immuntherapie

Hepatocellular Carcinoma – from Immunobiology to Immunotherapy
T. Flecken
,
N. Schmidt
,
H. C. Spangenberg
,
R. Thimme
Weitere Informationen

Publikationsverlauf

14. November 2011

23. November 2011

Publikationsdatum:
05. Januar 2012 (online)

Zusammenfassung

Das hepatozelluläre Karzinom (HCC; vom engl. hepatocellular carcinoma) ist der fünfthäufigste maligne Tumor weltweit mit steigender Inzidenz. Der klinische Verlauf der Erkrankung ist durch die häufig zugrunde liegende Leberzirrhose, die Tumorgröße zum Zeitpunkt der Diagnose sowie die zur Verfügung stehenden Therapien limitiert. In den letzten Jahren wurden große Fortschritte im Verständnis der Immunbiologie des HCCs erzielt. In diesem Artikel sollen aktuelle Erkenntnisse über die Biologie des HCCs, über die Bedeutung chronischer Entzündungen bei der Karzinogenese und über die Rolle der tumorspezifischen Immunantworten dargestellt werden. Außerdem werden mögliche neue immunbasierte Therapieformen vorgestellt, die in Zukunft das Spektrum der Therapien beim HCC erweitern könnten.

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide with an increasing incidence. The clinical outcome is influenced by the underlying liver cirrhosis, the size of the tumour at the time of diagnosis and the few therapeutic options currently available. In recent years there has been a lot of progress in the understanding of HCC immunobiology. This review summarizes our current knowledge of HCC biology, the role of chronic inflammation in carcinogenesis and the role of tumour-specific immune responses. Furthermore, we will present potentially new, immune-based therapies that might open up new avenues for the treatment of HCC.

 
  • Referenzen

  • 1 Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997; 349: 1269-1276
  • 2 Ferlay J, Shin HR, Bray F et al. GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010 http://globocan.iarc.fr [27/09/2011]
  • 3 American Cancer Society. Cancer Facts & Figures 2011. Atlanta: American Cancer Society; 2011
  • 4 El-Serag HB. Hepatocellular Carcinoma. New England Journal of Medicine 2011; 365: 1118-1127
  • 5 El-Serag HB, Marrero JA, Rudolph L et al. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 2008; 134: 1752-1763
  • 6 Talwalkar JA, Gores GJ. Diagnosis and staging of hepatocellular carcinoma. Gastroenterology 2004; 127: 126-132
  • 7 Breuhahn K, Gores G, Schirmacher P. Strategies for hepatocellular carcinoma therapy and diagnostics: lessons learned from high throughput and profiling approaches. Hepatology 2011; 53: 2112-2121
  • 8 Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022
  • 9 Schmidt S, Follmann M, Malek N et al. Critical Appraisal of Clinical Practice Guidelines for Diagnosis and Treatment of Hepatocellular Carcinoma. J Gastroenterol Hepatol 2011;
  • 10 Simonetti RG, Liberati A, Angiolini C et al. Treatment of hepatocellular carcinoma: a systematic review of randomized controlled trials. Ann Oncol 1997; 8: 117-136
  • 11 Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390
  • 12 Spangenberg HC, Thimme R, Blum HE. Targeted therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2009; 6: 423-432
  • 13 Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 674-687
  • 14 Feo F, Frau M, Tomasi ML et al. Genetic and epigenetic control of molecular alterations in hepatocellular carcinoma. Exp Biol Med (Maywood) 2009; 234: 726-736
  • 15 Wong N, Lai P, Pang E et al. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology 2000; 32: 1060-1068
  • 16 Kusano N, Okita K, Shirahashi H et al. Chromosomal imbalances detected by comparative genomic hybridization are associated with outcome of patients with hepatocellular carcinoma. Cancer 2002; 94: 746-751
  • 17 Totoki Y, Tatsuno K, Yamamoto S et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet 2011; 43: 464-469
  • 18 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674
  • 19 Maass T, Sfakianakis I, Staib F et al. Microarray-based gene expression analysis of hepatocellular carcinoma. Curr Genomics 2010; 11: 261-268
  • 20 Wilkens L, Flemming P, Gebel M et al. Induction of aneuploidy by increasing chromosomal instability during dedifferentiation of hepatocellular carcinoma. Proc Natl Acad Sci USA 2004; 101: 1309-1314
  • 21 Saeki A, Tamura S, Ito N et al. Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer 2002; 94: 2047-2054
  • 22 Urabe Y, Nouso K, Higashi T et al. Telomere length in human liver diseases. Liver 1996; 16: 293-297
  • 23 Plentz RR, Caselitz M, Bleck JS et al. Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma. Hepatology 2004; 40: 80-86
  • 24 Shimojima M, Komine F, Hisatomi H et al. Detection of telomerase activity, telomerase RNA component, and telomerase reverse transcriptase in human hepatocellular carcinoma. Hepatol Res 2004; 29: 31-38
  • 25 Farazi PA, Glickman J, Jiang S et al. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res 2003; 63: 5021-5027
  • 26 Minouchi K, Kaneko S, Kobayashi K. Mutation of p53 gene in regenerative nodules in cirrhotic liver. J Hepatol 2002; 37: 231-239
  • 27 Oda T, Tsuda H, Scarpa A et al. p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res 1992; 52: 6358-6364
  • 28 Ueda H, Ullrich SJ, Gangemi JD et al. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet 1995; 9: 41-47
  • 29 Deng L, Nagano-Fujii M, Tanaka M et al. NS3 protein of Hepatitis C virus associates with the tumour suppressor p53 and inhibits its function in an NS3 sequence-dependent manner. J Gen Virol 2006; 87: 1703-1713
  • 30 Lan KH, Sheu ML, Hwang SJ et al. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 2002; 21: 4801-4811
  • 31 Ray RB, Steele R, Meyer K et al. Transcriptional repression of p53 promoter by hepatitis C virus core protein. J Biol Chem 1997; 272: 10983-10986
  • 32 Lee SG, Rho HM. Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene 2000; 19: 468-471
  • 33 Wang XW, Forrester K, Yeh H et al. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci USA 1994; 91: 2230-2234
  • 34 Tokino T, Tamura H, Hori N et al. Chromosome deletions associated with hepatitis B virus integration. Virology 1991; 185: 879-882
  • 35 Murakami Y, Saigo K, Takashima H et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 2005; 54: 1162-1168
  • 36 Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol 2002; 27: 63-68
  • 37 Moriya K, Nakagawa K, Santa T et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 2001; 61: 4365-4370
  • 38 Molon B, Ugel S, Del Pozzo F et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 2011; 208: 1949-1962
  • 39 Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010; 29: 4989-5005
  • 40 Ito Y, Takeda T, Sakon M et al. Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer 2001; 84: 1377-1383
  • 41 Jhappan C, Stahle C, Harkins RN et al. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 1990; 61: 1137-1146
  • 42 Sandgren EP, Luetteke NC, Qiu TH et al. Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol Cell Biol 1993; 13: 320-330
  • 43 Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene 2006; 25: 3787-3800
  • 44 Daveau M, Scotte M, Francois A et al. Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Mol Carcinog 2003; 36: 130-141
  • 45 Bangoura G, Liu ZS, Qian Q et al. Prognostic significance of HIF-2alpha/EPAS1 expression in hepatocellular carcinoma. World J Gastroenterol 2007; 13: 3176-3182
  • 46 Maass T, Thieringer FR, Mann A et al. Liver specific overexpression of platelet-derived growth factor-B accelerates liver cancer development in chemically induced liver carcinogenesis. Int J Cancer 2011; 128: 1259-1268
  • 47 Mas VR, Maluf DG, Archer KJ et al. Angiogenesis soluble factors as hepatocellular carcinoma noninvasive markers for monitoring hepatitis C virus cirrhotic patients awaiting liver transplantation. Transplantation 2007; 84: 1262-1271
  • 48 Yamamoto A, Dhar DK, El-Assal ON et al. Thymidine phosphorylase (platelet-derived endothelial cell growth factor), microvessel density and clinical outcome in hepatocellular carcinoma. J Hepatol 1998; 29: 290-299
  • 49 El-Assal ON, Yamanoi A, Soda Y et al. Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver: possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver. Hepatology 1998; 27: 1554-1562
  • 50 Hwang YH, Choi JY, Kim S et al. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res 2004; 29: 113-121
  • 51 Hu TH, Huang CC, Lin PR et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1 /MMAC1/TEP1#x200A;TEP1 in hepatocellular carcinoma. Cancer 2003; 97: 1929-1940
  • 52 Wong CM, Fan ST, Ng IO. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 2001; 92: 136-145
  • 53 de La Coste A, Romagnolo B, Billuart P et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 1998; 95: 8847-8851
  • 54 Erhardt A, Hassan M, Heintges T et al. Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology 2002; 292: 272-284
  • 55 Feitelson MA, Reis HM, Tufan NL et al. Putative roles of hepatitis B x antigen in the pathogenesis of chronic liver disease. Cancer Lett 2009; 286: 69-79
  • 56 Fukutomi T, Zhou Y, Kawai S et al. Hepatitis C virus core protein stimulates hepatocyte growth: correlation with upregulation of wnt-1 expression. Hepatology 2005; 41: 1096-1105
  • 57 He Y, Nakao H, Tan SL et al. Subversion of cell signaling pathways by hepatitis C virus nonstructural 5A protein via interaction with Grb2 and P85 phosphatidylinositol 3-kinase. J Virol 2002; 76: 9207-9217
  • 58 Huang S, He X. The role of microRNAs in liver cancer progression. Br J Cancer 2011; 104: 235-240
  • 59 Law PT, Wong N. Emerging roles of microRNA in the intracellular signaling networks of hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26: 437-449
  • 60 Meng F, Henson R, Wehbe-Janek H et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647-658
  • 61 Liu S, Guo W, Shi J et al. MicroRNA-135a Contributes to the Development of Portal Vein Tumor Thrombus by Promoting Metastasis in Hepatocellular Carcinoma. J Hepatol 2011;
  • 62 Herath NI, Leggett BA, MacDonald GA. Review of genetic and epigenetic alterations in hepatocarcinogenesis. J Gastroenterol Hepatol 2006; 21: 15-21
  • 63 Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002; 31: 339-346
  • 64 Goeppert B, Schmezer P, Dutruel C et al. Down-regulation of tumor suppressor A kinase anchor protein 12 in human hepatocarcinogenesis by epigenetic mechanisms. Hepatology 2010; 52: 2023-2033
  • 65 Villanueva A, Hoshida Y, Battiston C et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 2011; 140: 1501-1512 e1502
  • 66 Woo HG, Park ES, Thorgeirsson SS et al. Exploring genomic profiles of hepatocellular carcinoma. Mol Carcinog 2011; 50: 235-243
  • 67 Chenivesse X, Franco D, Brechot C. MDR1 (multidrug resistance) gene expression in human primary liver cancer and cirrhosis. J Hepatol 1993; 18: 168-172
  • 68 Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008; 48: 1312-1327
  • 69 Flecken T, Spangenberg HC, Thimme R. Immunobiology of hepatocellular carcinoma. Langenbecks Arch Surg 2011;
  • 70 Nakamoto Y, Guidotti LG, Kuhlen CV et al. Immune pathogenesis of hepatocellular carcinoma. J Exp Med 1998; 188: 341-350
  • 71 Haybaeck J, Zeller N, Wolf MJ et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 2009; 16: 295-308
  • 72 Tanaka J, Sugimoto K, Shiraki K et al. Functional cell surface expression of toll-like receptor 9 promotes cell proliferation and survival in human hepatocellular carcinomas. Int J Oncol 2010; 37: 805-814
  • 73 He G, Karin M. NF-kappaB and STAT3 – key players in liver inflammation and cancer. Cell Res 2011; 21: 159-168
  • 74 Sakurai T, He G, Matsuzawa A et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008; 14: 156-165
  • 75 Maeda S, Chang L, Li ZW et al. IKKbeta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFalpha. Immunity 2003; 19: 725-737
  • 76 Luedde T, Beraza N, Kotsikoris V et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007; 11: 119-132
  • 77 Pham CG, Bubici C, Zazzeroni F et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 2004; 119: 529-542
  • 78 Maeda S, Kamata H, Luo JL et al. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 977-990
  • 79 He G, Yu GY, Temkin V et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 2010; 17: 286-297
  • 80 Al ZaidSiddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 2008; 18: 254-267
  • 81 Calvisi DF, Ladu S, Gorden A et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130: 1117-1128
  • 82 Wong VW, Yu J, Cheng AS et al. High serum interleukin-6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. Int J Cancer 2009; 124: 2766-2770
  • 83 Naugler WE, Sakurai T, Kim S et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317: 121-124
  • 84 Nakagawa H, Maeda S, Yoshida H et al. Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: an analysis based on gender differences. Int J Cancer 2009; 125: 2264-2269
  • 85 Achyut BR, Yang L. Transforming Growth Factor-beta in the Gastrointestinal and Hepatic Tumor Microenvironment. Gastroenterology 2011;
  • 86 Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010; 40: 1830-1835
  • 87 Weaver CT, Harrington LE, Mangan PR et al. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24: 677-688
  • 88 Kuang DM, Peng C, Zhao Q et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology 2010; 51: 154-164
  • 89 Kuang DM, Peng C, Zhao Q et al. Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol 2010; 185: 1544-1549
  • 90 Jiang R, Tan Z, Deng L et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology 2011;
  • 91 Park O, Wang H, Weng H et al. In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression. Hepatology 2011; 54: 252-261
  • 92 Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004; 21: 467-476
  • 93 Kuang DM, Zhao Q, Wu Y et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 2011; 54: 948-955
  • 94 Zhang JP, Yan J, Xu J et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 2009; 50: 980-989
  • 95 Li YW, Qiu SJ, Fan J et al. Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol 2011; 54: 497-505
  • 96 Budhu A, Wang XW. The role of cytokines in hepatocellular carcinoma. J Leukoc Biol 2006; 80: 1197-1213
  • 97 Ho SY, Wang YJ, Chen HL et al. Increased risk of developing hepatocellular carcinoma associated with carriage of the TNF2 allele of the -308 tumor necrosis factor-alpha promoter gene. Cancer Causes Control 2004; 15: 657-663
  • 98 Wada Y, Nakashima O, Kutami R et al. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 1998; 27: 407-414
  • 99 Gao Q, Qiu SJ, Fan J et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007; 25: 2586-2593
  • 100 Unitt E, Marshall A, Gelson W et al. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol 2006; 45: 246-253
  • 101 Ikeguchi M, Oi K, Hirooka Y et al. CD8+ lymphocyte infiltration and apoptosis in hepatocellular carcinoma. Eur J Surg Oncol 2004; 30: 53-57
  • 102 Hiroishi K, Eguchi J, Baba T et al. Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 2010; 45: 451-458
  • 103 Yoong KF, McNab G, Hubscher SG et al. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma. J Immunol 1998; 160: 3978-3988
  • 104 Fisher DT, Chen Q, Skitzki JJ et al. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest 2011; 121: 3846-3859
  • 105 Finn OJ. Cancer immunology. N Engl J Med 2008; 358: 2704-2715
  • 106 Breous E, Thimme R. Potential of immunotherapy for hepatocellular carcinoma. J Hepatol 2011; 54: 830-834
  • 107 Mizukoshi E, Nakamoto Y, Arai K et al. Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 2011; 53: 1206-1216
  • 108 Mizukoshi E, Nakamoto Y, Marukawa Y et al. Cytotoxic T cell responses to human telomerase reverse transcriptase in patients with hepatocellular carcinoma. Hepatology 2006; 43: 1284-1294
  • 109 Gehring AJ, Ho ZZ, Tan AT et al. Profile of tumor antigen-specific CD8 T cells in patients with hepatitis B virus-related hepatocellular carcinoma. Gastroenterology 2009; 137: 682-690
  • 110 Zerbini A, Pilli M, Soliani P et al. Ex vivo characterization of tumor-derived melanoma antigen encoding gene-specific CD8+cells in patients with hepatocellular carcinoma. J Hepatol 2004; 40: 102-109
  • 111 Butterfield LH, Ribas A, Meng WS et al. T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin Cancer Res 2003; 9: 5902-5908
  • 112 Thimme R, Neagu M, Boettler T et al. Comprehensive analysis of the alpha-fetoprotein-specific CD8+ T cell responses in patients with hepatocellular carcinoma. Hepatology 2008; 48: 1821-1833
  • 113 Komori H, Nakatsura T, Senju S et al. Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin Cancer Res 2006; 12: 2689-2697
  • 114 Evdokimova VN, Liu Y, Potter DM et al. AFP-specific CD4+ helper T-cell responses in healthy donors and HCC patients. J Immunother 2007; 30: 425-437
  • 115 Witkowski M, Spangenberg HC, Neumann-Haefelin C et al. Lack of ex vivo peripheral and intrahepatic alpha-fetoprotein-specific CD4+ responses in hepatocellular carcinoma. Int J Cancer 2010;
  • 116 Ayaru L, Pereira SP, Alisa A et al. Unmasking of alpha-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol 2007; 178: 1914-1922
  • 117 Zerbini A, Pilli M, Penna A et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res 2006; 66: 1139-1146
  • 118 Cai XY, Gao Q, Qiu SJ et al. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol 2006; 132: 293-301
  • 119 Caligiuri MA. Human natural killer cells. Blood 2008; 112: 461-469
  • 120 Chuang WL, Liu HW, Chang WY. Natural killer cell activity in patients with hepatocellular carcinoma relative to early development and tumor invasion. Cancer 1990; 65: 926-930
  • 121 Taketomi A, Shimada M, Shirabe K et al. Natural killer cell activity in patients with hepatocellular carcinoma: a new prognostic indicator after hepatectomy. Cancer 1998; 83: 58-63
  • 122 Zerbini A, Pilli M, Laccabue D et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 2010; 138: 1931-1942
  • 123 Nakano K, Orita T, Nezu J et al. Anti-glypican 3 antibodies cause ADCC against human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2009; 378: 279-284
  • 124 Chen X, Fu S, Chen F et al. Identification of tumor-associated antigens in human hepatocellular carcinoma by autoantibodies. Oncol Rep 2008; 20: 979-985
  • 125 Heo CK, Woo MK, Yu DY et al. Identification of autoantibody against fatty acid synthase in hepatocellular carcinoma mouse model and its application to diagnosis of HCC. Int J Oncol 2010; 36: 1453-1459
  • 126 Huang J, Cai MY, Wei DP. HLA class I expression in primary hepatocellular carcinoma. World J Gastroenterol 2002; 8: 654-657
  • 127 Wherry EJ. T cell exhaustion. Nat Immunol 2011; 12: 492-499
  • 128 Zhao Q, Xiao X, Wu Y et al. Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol 2011; 41: 2314-2322
  • 129 Wu K, Kryczek I, Chen L et al. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res 2009; 69: 8067-8075
  • 130 Gao Q, Wang XY, Qiu SJ et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 2009; 15: 971-979
  • 131 Maki A, Matsuda M, Asakawa M et al. Decreased expression of CD28 coincides with the down-modulation of CD3zeta and augmentation of caspase-3 activity in T cells from hepatocellular carcinoma-bearing patients and hepatitis C virus-infected patients. J Gastroenterol Hepatol 2004; 19: 1348-1356
  • 132 Hsu PN, Yang TC, Kao JT et al. Increased PD-1 and decreased CD28 expression in chronic hepatitis B patients with advanced hepatocellular carcinoma. Liver Int 2010; 30: 1379-1386
  • 133 Shi F, Shi M, Zeng Z et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer 2011; 128: 887-896
  • 134 Appay V, van Lier RA, Sallusto F et al. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 2008; 73: 975-983
  • 135 Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10: 753-766
  • 136 Ormandy LA, Farber A, Cantz T et al. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol 2006; 12: 3275-3282
  • 137 Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 2009; 30: 636-645
  • 138 Ormandy LA, Hillemann T, Wedemeyer H et al. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 2005; 65: 2457-2464
  • 139 Yang XH, Yamagiwa S, Ichida T et al. Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol 2006; 45: 254-262
  • 140 Fu J, Xu D, Liu Z et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007; 132: 2328-2339
  • 141 Unitt E, Rushbrook SM, Marshall A et al. Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 2005; 41: 722-730
  • 142 Zhou J, Ding T, Pan W et al. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer 2009; 125: 1640-1648
  • 143 Cao M, Cabrera R, Xu Y et al. Hepatocellular carcinoma cell supernatants increase expansion and function of CD4(+)CD25(+) regulatory T cells. Lab Invest 2007; 87: 582-590
  • 144 Chen KJ, Lin SZ, Zhou L et al. Selective Recruitment of Regulatory T Cell through CCR6-CCL20 in Hepatocellular Carcinoma Fosters Tumor Progression and Predicts Poor Prognosis. PLoS One 2011; 6: e24671
  • 145 Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009; 182: 4499-4506
  • 146 Hoechst B, Voigtlaender T, Ormandy L et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009; 50: 799-807
  • 147 Hu CE, Gan J, Zhang RD et al. Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function. Scand J Gastroenterol 2011; 46: 156-164
  • 148 Hoechst B, Ormandy LA, Ballmaier M et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008; 135: 234-243
  • 149 Kohga K, Takehara T, Tatsumi T et al. Anticancer chemotherapy inhibits MHC class I-related chain a ectodomain shedding by downregulating ADAM10 expression in hepatocellular carcinoma. Cancer Res 2009; 69: 8050-8057
  • 150 Kohga K, Takehara T, Tatsumi T et al. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology 2010; 51: 1264-1273
  • 151 Kumar V, Kato N, Urabe Y et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet 2011; 43: 455-458
  • 152 Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565-1570
  • 153 Avella DM, Li G, Schell TD et al. Regression of established hepatocellular carcinoma is induced by chemo-immunotherapy in an orthotopic murine model. Hepatology 2011;
  • 154 Grimm CF, Ortmann D, Mohr L et al. Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology 2000; 119: 1104-1112
  • 155 Cany J, Barteau B, Tran L et al. AFP-specific immunotherapy impairs growth of autochthonous hepatocellular carcinoma in mice. J Hepatol 2011; 54: 115-121
  • 156 Gonzalez-Carmona MA, Lukacs-Kornek V, Timmerman A et al. CD40ligand-expressing dendritic cells induce regression of hepatocellular carcinoma by activating innate and acquired immunity in vivo. Hepatology 2008; 48: 157-168
  • 157 Kayashima H, Toshima T, Okano S et al. Intratumoral neoadjuvant immunotherapy using IL-12 and dendritic cells is an effective strategy to control recurrence of murine hepatocellular carcinoma in immunosuppressed mice. J Immunol 2010; 185: 698-708
  • 158 Boozari B, Mundt B, Woller N et al. Antitumoural immunity by virus-mediated immunogenic apoptosis inhibits metastatic growth of hepatocellular carcinoma. Gut 2010; 59: 1416-1426
  • 159 Reinisch W, Holub M, Katz A et al. Prospective pilot study of recombinant granulocyte-macrophage colony-stimulating factor and interferon-gamma in patients with inoperable hepatocellular carcinoma. J Immunother 2002; 25: 489-499
  • 160 Palmer DH, Midgley RS, Mirza N et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 2009; 49: 124-132
  • 161 Butterfield LH, Ribas A, Dissette VB et al. A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin Cancer Res 2006; 12: 2817-2825
  • 162 Greten TF, Forner A, Korangy F et al. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer 2010; 10: 209
  • 163 Yoshikawa T, Nakatsugawa M, Suzuki S et al. HLA-A2-restricted glypican-3 peptide-specific CTL clones induced by peptide vaccine show high avidity and antigen-specific killing activity against tumor cells. Cancer Sci 2011; 102: 918-925
  • 164 Takayama T, Sekine T, Makuuchi M et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 2000; 356: 802-807
  • 165 Kuang M, Peng BG, Lu MD et al. Phase II randomized trial of autologous formalin-fixed tumor vaccine for postsurgical recurrence of hepatocellular carcinoma. Clin Cancer Res 2004; 10: 1574-1579
  • 166 Couzin-Frankel J. Immune therapy steps up the attack. Science 2010; 330: 440-443
  • 167 Hodi FS, O'Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711-723
  • 168 Kantoff PW, Higano CS, Shore ND et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363: 411-422
  • 169 Schwartzentruber DJ, Lawson DH, Richards JM et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 2011; 364: 2119-2127
  • 170 Becker N, Wahrendorf J. Krebsatlas der Bundesrepublik Deutschland 1981–1990. Springer; 1998. www.krebsatlas.de [12/10/2011]
  • 171 Bevölkerung nach dem Gebietsstand. Statistisches Bundesamt; 2011 www.destatis.de [12/10/2011]