Horm Metab Res 2011; 43(10): 687-692
DOI: 10.1055/s-0031-1286308
Original Basic
Georg Thieme Verlag KG Stuttgart · New York

Lonidamine Extends Lifespan of Adult Caenorhabditis elegans by Increasing the Formation of Mitochondrial Reactive Oxygen Species

S. Schmeisser
1   Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany
2   Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
,
K. Zarse
1   Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany
,
M. Ristow
1   Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany
3   Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
› Author Affiliations
Further Information

Publication History

received 02 July 2011

accepted 03 August 2011

Publication Date:
19 September 2011 (online)

Abstract

Compounds that delay aging in model organisms may be of significant interest to antiaging medicine, since these substances potentially provide pharmaceutical approaches to promote healthy lifespan in humans. The aim of the study was to test whether pharmaceutical concentrations of the glycolytic inhibitor lonidamine are capable of extending lifespan in a nematodal model organism for aging processes, the roundworm Caenorhabditis elegans. Several hundreds of adult C. elegans roundworms were maintained on agar plates and fed E. coli strain OP50 bacteria. Lonidamine was applied to test whether it may promote longevity by quantifying survival in the presence and absence of the compound. In addition, several biochemical and metabolic assays were performed with nematodes exposed to lonidamine. Lonidamine significantly extends both median and maximum lifespan of C. elegans when applied at a concentration of 5 micromolar by 8% each. Moreover, the compound increases paraquat stress resistance, and promotes mitochondrial respiration, culminating in increased formation of reactive oxygen species (ROS). Extension of lifespan requires activation of pmk-1, an orthologue of p38 MAP kinase, and is abolished by co-application of an antioxidant, indicating that increased ROS formation is required for the extension of lifespan by lonidamine. Consistent with the concept of mitohormesis, lonidamine is capable of promoting longevity in a pmk-1 sensitive manner by increasing formation of ROS.

 
  • References

  • 1 Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988; 118: 75-86
  • 2 Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature 1993; 366: 461-464
  • 3 Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature 1996; 384: 33
  • 4 Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997; 277: 942-946
  • 5 Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 2001; 292: 104-106
  • 6 Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 2001; 292: 107-110
  • 7 Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003; 421: 182-187
  • 8 Blüher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003; 299: 572-574
  • 9 Weindruch R, Walford RL. The retardation of aging and disease by dietary restriction. Springfield, Illinois: Charles C Thomas Pub Ltd.; 1988
  • 10 Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003; 426: 620
  • 11 Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460: 392-395
  • 12 Kaeberlein M. Resveratrol and rapamycin: are they anti-aging drugs?. Bioessays 2010; 32: 96-99
  • 13 Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425: 191-196
  • 14 Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004; 430: 686-689
  • 15 Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444: 337-342
  • 16 Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R. Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span. Cell Metab 2008; 8: 157-168
  • 17 Zarse K, Schmeisser S, Birringer M, Falk E, Schmoll D, Ristow M. Differential Effects of Resveratrol and SRT1720 on Lifespan of Adult Caenorhabditis elegans. Horm Metab Res 2010; 42: 837-839
  • 18 Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 2007; 6: 280-293
  • 19 Zarse K, Bossecker A, Muller-Kuhrt L, Siems K, Hernandez MA, Berendsohn WG, Birringer M, Ristow M. The Phytochemical Glaucarubinone Promotes Mitochondrial Metabolism, Reduces Body Fat, and Extends Lifespan of Caenorhabditis elegans. Horm Metab Res 2011; 43: 241-243
  • 20 Turrens JF. Inhibitory action of the antitumor agent lonidamine on mitochondrial respiration of Trypanosoma cruzi and T. brucei. Mol Biochem Parasitol 1986; 20: 237-241
  • 21 Ravagnan L, Marzo I, Costantini P, Susin SA, Zamzami N, Petit PX, Hirsch F, Goulbern M, Poupon MF, Miccoli L, Xie Z, Reed JC, Kroemer G. Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene 1999; 18: 2537-2546
  • 22 Silvestrini B, Palazzo G, De Gregorio M. Lonidamine and related compounds. Prog Med Chem 1984; 21: 110-135
  • 23 Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 2000; 92: 1042-1053
  • 24 Armstrong JS. Mitochondria: a target for cancer therapy. Br J Pharmacol 2006; 147: 239-248
  • 25 Dogliotti L, Danese S, Berruti A, Zola P, Buniva T, Bottini A, Richiardi G, Moro G, Farris A, Bau MG, Porcile G. Cisplatin, epirubicin, and lonidamine combination regimen as first-line chemotherapy for metastatic breast cancer: a pilot study. Cancer Chemother Pharmacol 1998; 41: 333-338
  • 26 Amadori D, Frassineti GL, De Matteis A, Mustacchi G, Santoro A, Cariello S, Ferrari M, Nascimben O, Nanni O, Lombardi A, Scarpi E, Zoli W. Modulating effect of lonidamine on response to doxorubicin in metastatic breast cancer patients: results from a multicenter prospective randomized trial. Breast Cancer Res Treat 1998; 49: 209-217
  • 27 Gardin G, Barone C, Nascimben O, Ianniello G, Sturba F, Contu A, Pronzato P, Rosso R. Lonidamine plus epirubicin and cyclophosphamide in advanced breast cancer. A phase II study. Eur J Cancer 1996; 32A: 176-177
  • 28 Silvestrini R, Zaffaroni N, Villa R, Orlandi L, Costa A. Enhancement of cisplatin activity by lonidamine in human ovarian cancer cells. Int J Cancer 1992; 52: 813-817
  • 29 Shevchuk I, Chekulayev V, Moan J, Berg K. Effects of the inhibitors of energy metabolism, lonidamine and levamisole, on 5-aminolevulinic-acid-induced photochemotherapy. Int J Cancer 1996; 67: 791-799
  • 30 Floridi A, Paggi MG, Marcante ML, Silvestrini B, Caputo A, De Martino C. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. J Natl Cancer Inst 1981; 66: 497-499
  • 31 Stryker JA, Gerweck LE. Lonidamine-induced, pH dependent inhibition of cellular oxygen utilization. Radiat Res 1988; 113: 356-361
  • 32 Floridi A, Lehninger AL. Action of the antitumor and antispermatogenic agent lonidamine on electron transport in Ehrlich ascites tumor mitochondria. Arch Biochem Biophys 1983; 226: 73-83
  • 33 Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, Metivier D, Marchetti P, Brenner C, Kroemer G. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. Oncogene 2001; 20: 7579-7587
  • 34 Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 1998; 187: 1261-1271
  • 35 Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2001; 2: 67-71
  • 36 Lena A, Rechichi M, Salvetti A, Bartoli B, Vecchio D, Scarcelli V, Amoroso R, Benvenuti L, Gagliardi R, Gremigni V, Rossi L. Drugs targeting the mitochondrial pore act as cytotoxic and cytostatic agents in temozolomide-resistant glioma cells. J Transl Med 2009; 7: 13
  • 37 Chen Z, Zhang H, Lu W, Huang P. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta 2009; 1787: 553-560
  • 38 Zimmermann S, Zarse K, Schulz TJ, Siems K, Müller-Kuhrt L, Birringer M, Ristow M. A cell-based high-throughput assay system reveals modulation of oxidative and non-oxidative glucose metabolism due to commonly used organic solvents. Horm Metab Res 2008; 40: 29-37
  • 39 Zarse K, Ristow M. Antidepressants of the serotonin-antagonist type increase body fat and decrease lifespan of adult Caenorhabditis elegans. PLoS ONE 2008; 3: e4062
  • 40 Gruber J, Ng LF, Poovathingal SK, Halliwell B. Deceptively simple but simply deceptive -Caenorhabditis elegans lifespan studies: Considerations for aging and antioxidant effects. FEBS Lett 2009; 583: 3377-3387
  • 41 Ben-Horin H, Tassini M, Vivi A, Navon G, Kaplan O. Mechanism of action of the antineoplastic drug lonidamine: 31P and 13C nuclear magnetic resonance studies. Cancer Res 1995; 55: 2814-2821
  • 42 Barja G. Oxygen radicals, a failure or a success of evolution?. Free Radic Res Commun 1993; 18: 63-70
  • 43 Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW. Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 2003; 14: S211-S215
  • 44 Kaelin Jr WG. ROS: really involved in oxygen sensing. Cell Metab 2005; 1: 357-358
  • 45 Connor KM, Subbaram S, Regan KJ, Nelson KK, Mazurkiewicz JE, Bartholomew PJ, Aplin AE, Tai YT, Aguirre-Ghiso J, Flores SC, Melendez JA. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem 2005; 280: 16916-16924
  • 46 Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 2005; 1: 401-408
  • 47 Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 2006; 91: 807-819
  • 48 Chandel NS, Budinger GR. The cellular basis for diverse responses to oxygen. Free Radic Biol Med 2007; 42: 165-174
  • 49 Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell 2007; 26: 1-14
  • 50 Owusu-Ansah E, Yavari A, Mandal S, Banerjee U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet 2008; 40: 356-361
  • 51 Finley LW, Haigis MC. The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res Rev 2009; 8: 173-188
  • 52 Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA 2009; 106: 8665-8670
  • 53 Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, Bruce C, Shields BJ, Skiba B, Ooms LM, Stepto N, Wu B, Mitchell CA, Tonks NK, Watt MJ, Febbraio MA, Crack PJ, Andrikopoulos S, Tiganis T. Reactive oxygen species enhance insulin sensitivity. Cell Metab 2009; 10: 260-272
  • 54 Lee SJ, Hwang AB, Kenyon C. Inhibition of Respiration Extends C. elegans Life Span via Reactive Oxygen Species that Increase HIF-1 Activity. Curr Biol 2010; 20: 2131-2136
  • 55 Yang W, Hekimi S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 2010; 8: e1000556
  • 56 Woo DK, Shadel GS. Mitochondrial stress signals revise an old aging theory. Cell 2011; 144: 11-12
  • 57 Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. Free Radic Biol Med 2011; 51: 327-336