Horm Metab Res 2011; 43(11): 774-781
DOI: 10.1055/s-0031-1287855
Animals
© Georg Thieme Verlag KG Stuttgart · New York

Soy Protein Isolate Modified Metabolic Phenotype and Hepatic Wnt Signaling in Obese Zucker Rats

J. Cain
1   Animal Science, Food & Nutrition, Southern Illinois University Carbondale, IL, USA
,
W. J. Banz
1   Animal Science, Food & Nutrition, Southern Illinois University Carbondale, IL, USA
,
D. Butteiger
2   Solae, LLC, St. Louis, MO, USA
,
J. E. Davis
1   Animal Science, Food & Nutrition, Southern Illinois University Carbondale, IL, USA
› Author Affiliations
Further Information

Publication History

received 07 June 2011

accepted 05 September 2011

Publication Date:
18 October 2011 (online)

Abstract

We have previously shown that soy protein isolate (SPI) with intact phytoestrogen content prevented obesity-related dysfunction. Recent data have suggested that soy ingredients may act as regulators of adipogenic programming in adipose tissue (AT) and liver. Thus, the current study was undertaken to determine whether the beneficial effects of SPI are linked to changes in adipogenic regulators, such as the Wnt signaling cascade. For this, lean (LZR) and obese Zucker (OZR) rats were provided isocaloric and isonitrogenous diets containing SPI, sodium caseinate, or dairy whey protein for 17 weeks. At termination, SPI increased body weight and total adiposity in rodents, which corresponded with an increase in both adipocyte size and number. Furthermore, markers of inflammation, hypercholesterolemia, and hepatic steatosis were all reduced in OZR rats provided SPI. Transcript abundance of several canonical and noncanonical Wnt signaling intermediates in liver, but not AT, was distinctly modified by SPI. Collectively, these data confirm the protective SPI attenuated obesity-related metabolic dysfunction conceivably through regulation of adipogenic programming, as evident by changes in AT morphology and hepatic Wnt signaling. Collectively, this study confirmed the potential utilization of soy protein and its bioactive ingredients for prevention and treatment of obesity-related comorbidities.

 
  • References

  • 1 Nan YM, Fu N, Wu WJ, Liang BL, Wang RQ, Zhao SX, Zhao JM, Yu J. Rosiglitazone prevents nutritional fibrosis and steatohepatitis in mice. Scand J Gastroenterol 2009; 44: 358-365
  • 2 Ratziu V, Giral P, Jacqueminet S, Charlotte F, Hartemann-Heurtier A, Serfaty L, Podevin P, Lacorte JM, Bernhardt C, Bruckert E, Grimaldi A, Poynard T. Rosiglitazone for nonalcoholic steatohepatitis: one year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 2008; 135: 100-110
  • 3 Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, Schraw T, Durand JL, Li H, Li G, Jelicks LA, Mehler MF, Hui DY, Deshaies Y, Shulman GI, Schwartz GJ, Scherer PE. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007; 117: 2621-2637
  • 4 Sugii S, Olson P, Sears DD, Saberi M, Atkins AR, Barish GD, Hong SH, Castro GL, Yin YQ, Nelson MC, Hsiao G, Greaves DR, Downes M, Yu RT, Olefsky JM, Evans RM. PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci USA 2009; 106: 22504-22509
  • 5 Kursawe R, Eszlinger M, Narayan D, Liu T, Bazuine M, Cali AM, D’Adamo E, Shaw M, Pierpont B, Shulman GI, Cushman SW, Sherman A, Caprio S. Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: association with insulin resistance and hepatic steatosis. Diabetes 2010; 59: 2288-2296
  • 6 Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U. Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab 2009; [Epub ahead of print]
  • 7 Dubois SG, Heilbronn LK, Smith SR, Albu JB, Kelley DE, Ravussin E. Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity (Silver Spring) 2006; 14: 1543-1552
  • 8 Moya M, Gomez-Lechon MJ, Castell JV, Jover R. Enhanced steatosis by nuclear receptor ligands: a study in cultured human hepatocytes and hepatoma cells with a characterized nuclear receptor expression profile. Chem Biol Interact 2010; 184: 376-387
  • 9 Schroeder-Gloeckler JM, Rahman SM, Janssen RC, Qiao L, Shao J, Roper M, Fischer SJ, Lowe E, Orlicky DJ, McManaman JL, Palmer C, Gitomer WL, Huang W, O’Doherty RM, Becker TC, Klemm DJ, Jensen DR, Pulawa LK, Eckel RH, Friedman JE. CCAAT/enhancer-binding protein beta deletion reduces adiposity, hepatic steatosis, and diabetes in Lepr(db/db) mice. J Biol Chem 2007; 282: 15717-15729
  • 10 Aithal GP, Thomas JA, Kaye PV, Lawson A, Ryder SD, Spendlove I, Austin AS, Freeman JG, Morgan L, Webber J. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 2008; 135 (1176) 1184
  • 11 Bowers RR, Lane MD. Wnt signaling and adipocyte lineage commitment. Cell Cycle 2008; 7: 1191-1196
  • 12 Tsukamoto H, She H, Hazra S, Cheng J, Miyahara T. Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation. J Gastroenterol Hepatol 2006; 21 (Suppl. 03) S102-S105
  • 13 Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 2007; 19: 612-617
  • 14 Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289: 950-953
  • 15 Kawai M, Mushiake S, Bessho K, Murakami M, Namba N, Kokubu C, Michigami T, Ozono K. Wnt/Lrp/beta-catenin signaling suppresses adipogenesis by inhibiting mutual activation of PPARgamma and C/EBPalpha. Biochem Biophys Res Commun 2007; 363: 276-282
  • 16 Liu J, Farmer SR. Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J Biol Chem 2004; 279: 45020-45027
  • 17 Gustafson B, Smith U. Activation of canonical wingless-type MMTV integration site family (Wnt) signaling in mature adipocytes increases beta-catenin levels and leads to cell dedifferentiation and insulin resistance. J Biol Chem 2010; 285: 14031-14041
  • 18 Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K, Tsukamoto H. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2008; 294: G39-G49
  • 19 Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev 2002; 18 (Suppl. 02) S10-S15
  • 20 Meriden T. Progress with thiazolidinediones in the management of type 2 diabetes mellitus. Clin Ther 2004; 26: 177-190
  • 21 Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, Kravitz BG, Yu D, Heise MA, Aftring RP, Viberti G. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2008; 31: 845-851
  • 22 Nissen SE, Wolski K. Rosiglitazone Revisited: An Updated Meta-analysis of Risk for Myocardial Infarction and Cardiovascular Mortality. Arch Intern Med 2010; 170: 1191-1201
  • 23 Dang Z, Lowik CW. The balance between concurrent activation of ERs and PPARs determines daidzein-induced osteogenesis and adipogenesis. J Bone Miner Res 2004; 19: 853-861
  • 24 Dang ZC. Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: mechanisms of action. Obes Rev 2009; 10: 342-349
  • 25 Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Lowik CW. Peroxisome proliferator-activated receptor gamma (PPARgamma ) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 2003; 278: 962-967
  • 26 Davis J, Higginbotham A, O’Connor T, Moustaid-Moussa N, Tebbe A, Kim YC, Cho KW, Shay N, Adler S, Peterson R, Banz W. Soy protein and isoflavones influence adiposity and development of metabolic syndrome in the obese male ZDF rat. Ann Nut Metab 2007; 51: 42-52
  • 27 Mezei O, Banz WJ, Steger RW, Peluso MR, Winters TA, Shay N. Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J Nutr 2003; 133: 1238-1243
  • 28 Davis J, Iqbal MJ, Steinle J. Soy protein influences the development of the metabolic syndrome in male obese ZDFxSHHF rats. Horm Metab Res 2005; 37: 316-325
  • 29 Rousseau V, Becker DJ, Ongemba LN. Developmental and nutritional changes of ob and PPAR gamma 2 gene expression in rat white adipose tissue. The Biochemical journal 1997; 321 Pt 2 451-456
  • 30 Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante Jr AW. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006; 116: 115-124
  • 31 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821-1830
  • 32 Jayagopal V, Albertazzi P, Kilpatrick ES, Howarth EM, Jennings PE, Hepburn DA, Atkin SL. Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care 2002; 25: 1709-1714
  • 33 Ustundag B, Bahcecioglu IH, Sahin K, Duzgun S, Koca S, Gulcu F, Ozercan IH. Protective effect of soy isoflavones and activity levels of plasma paraoxonase and arylesterase in the experimental nonalcoholic steatohepatitis model. Dig Dis Sci 2007; 52: 2006-2014
  • 34 Huang Y, Cao S, Nagamani M, Anderson KE, Grady JJ, Lu LJ. Decreased circulating levels of tumor necrosis factor alpha in postmenopausal women during consumption of soy-containing isoflavones. J Clin Endocrinol Metab 2005; 90: 3956-3962
  • 35 Cho KW, Lee OH, Banz WJ, Moustaid-Moussa N, Shay NF, Kim YC. Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPARgamma transcriptional activity. J Nutr Biochem 21: 841-847
  • 36 Kojima T, Uesugi T, Toda T, Miura Y, Yagasaki K. Hypolipidemic action of the soybean isoflavones genistein and genistin in glomerulonephritic rats. Lipids 2002; 37: 261-265
  • 37 Nogowski L, Mackowiak P, Kandulska K, Szkudelski T, Nowak KW. Genistein-induced changes in lipid metabolism of ovariectomized rats. Ann Nutr Metab 1998; 42: 360-366
  • 38 Ryokkynen A, Kukkonen JV, Nieminen P. Effects of dietary genistein on mouse reproduction, postnatal development and weight-regulation. Animal reproduction science 2006; 93: 337-348
  • 39 Sosic-Jurjevic B, Filipovic B, Ajdzanovic V, Brkic D, Ristic N, Stojanoski MM, Nestorovic N, Trifunovic S, Sekulic M. Subcutaneously administrated genistein and daidzein decrease serum cholesterol and increase triglyceride levels in male middle-aged rats. Exp Biol Med (Maywood) 2007; 232: 1222-1227
  • 40 Teixeira SR, Potter SM, Weigel R, Hannum S, Erdman Jr. JW, Hasler CM. Effects of feeding 4 levels of soy protein for 3 and 6 wk on blood lipids and apolipoproteins in moderately hypercholesterolemic men. Am J Clin Nutr 2000; 71: 1077-1084
  • 41 Relic B, Zeddou M, Desoroux A, Beguin Y, de Seny D, Malaise MG. Geni­stein induces adipogenesis but inhibits leptin induction in human synovial fibroblasts. Lab Invest 2009; 89: 811-822
  • 42 Ueki S, Oguma M, Usami A, Kamada Y, Kato H, Kamada R, Takeda M, Ito W, Tanigai T, Kayaba H, Chihara J. Regulation of peroxisome proliferator-activated receptor gamma expression in human eosinophils by estradiol. Int Arch Allergy Immunol 2009; 149 (Suppl. 01) 51-56
  • 43 Su Y, Simmen RC. Soy isoflavone genistein upregulates epithelial adhesion molecule E cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Carcinogenesis 2009; 30: 331-339
  • 44 Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783-787
  • 45 Vidal-Puig A, Jimenez-Linan M, Lowell BB, Hamann A, Hu E, Spiegelman B, Flier JS, Moller DE. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest 1996; 97: 2553-2561