Synlett 2012(1): 145-149  
DOI: 10.1055/s-0031-1290088
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Silver-Catalyzed 2-Pyridyl Arylation of Pyridine N-Oxides with Arylboronic Acids at Room Temperature

Wenpeng Mai*, Jinwei Yuan, Zhicheng Li*, Gangchun Sun, Lingbo Qu
Chemistry and Chemical Engineering School, Henan University of Technology, Zhengzhou Henan 450001, P. R. of China
Fax: +86(371)67756715; e-Mail: wpmai@haut.edu.cn; e-Mail: lizhicheng65@sina.com;
Further Information

Publication History

Received 28 August 2011
Publication Date:
05 December 2011 (online)

Abstract

A novel direct arylation of pyridine N-oxides with arylboronic acids through C-H functionalization has been developed. This new reaction is performed at room temperature using catalytic silver(I) nitrate in the presence of potassium persulfate and give 2-pyridyl arylation derivatives of pyridine N-oxides.

    References and Notes

  • 1a Daugulis O. Do H.-Q. Shabashov D. Acc. Chem. Res.  2009,  42:  1074 
  • 1b Yu J.-Q. Giri R. Chen X. Org. Biomol. Chem.  2006,  4:  4041 
  • 1c Alberico D. Scott ME. Lautens M. Chem. Rev.  2007,  107:  174 
  • 1d Chen X. Engle K.-M. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed.  2009,  48:  5094 
  • 1e Li C.-J. Acc. Chem. Res.  2009,  42:  335 
  • 1f Kakiuchi F. Kochi T. Synthesis  2008,  3013 
  • 1g Seregin IV. Gevorgyan V. Chem Soc. Rev.  2007,  36:  1173 
  • 2a Join B. Yamamoto T. Itami K. Angew. Chem. Int. Ed.  2009,  121:  3698 
  • 2b Zaitsev VG. Shabashov D. Daugulis O. J. Am. Chem. Soc.  2005,  127:  13154 
  • 2c Beck EM. Grimster NP. Hatley R. Gaunt MJ. J. Am. Chem. Soc.  2006,  128:  2528 
  • 2d Campeau L.-C. Staurt DR. Leclerc J.-P. Bertrand-Laperle M. Villemure E. Sun H.-Y. Lasserre S. Guimond N. Lecavallier M. Fagoun K. J. Am. Chem. Soc.  2009,  131:  3291 
  • 2e Chen X. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc.  2006,  128:  12634 
  • 2f Scarborough CC. McDonald RI. Hartmann C. Sazama GT. Bergant A. Stahl SS. J. Org. Chem.  2009,  65:  914 
  • 3a Colby DA. Bergman RG. Ellman JA. Chem. Rev.  2010,  110:  624 
  • 3b Lyons TW. Sanford MS. Chem. Rev.  2010,  110:  1147 
  • 3c Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed.  2009,  48:  9792 
  • 3d Xiao B. Fu Y. Xu J. Gong TJ. Dai JJ. Yi J. Liu L. J. Am. Chem. Soc.  2010,  132:  468 
  • 3e Zhao XD. Yeung CS. Dong VM. J. Am. Chem. Soc.  2010,  132:  5837 
  • 3f Li BJ. Yang SD. Shi ZJ. Synlett  2008,  949 
  • 3g Cai GX. Fu Y. Li YZ. Wang XB. Shi ZJ. J. Am. Chem. Soc.  2007,  129:  7666 
  • 3h Lu Y. Wang DH. Engle KM. Yu JQ. J. Am. Chem. Soc.  2010,  132:  5916 
  • 3i Li JJ. Mei TS. Yu JQ. Angew. Chem. Int. Ed.  2008,  47:  6452 
  • 3j Haffemayer B. Gulias M. Gaunt MJ. Chem. Sci.  2011,  2:  312 
  • 3k Yeung CS. Zhao XD. Borduas N. Dong VM. Chem. Sci.  2010,  1:  331 
  • 3l Chiong HA. Pham QN. Daugulis O. J. Am. Chem. Soc.  2007,  129:  9879 
  • 3m Engle KM. Wang DH. Yu JQ. J. Am. Chem. Soc.  2010,  132:  14137 
  • 3n Mousseau JJ. Vallée F. Lorion MM. Charette AB. J. Am. Chem. Soc.  2010,  132:  14412 
  • 3o Ng KH. Chan ASC. Yu WY. J. Am. Chem. Soc.  2010,  132:  12862 
  • 4a Shi BS. Zhang YH. Lam JK. Wang DH. Yu JQ. J. Am. Chem. Soc.  2010,  132:  460 
  • 4b Chu JH. Tsai SL. Wu MJ. Synthesis  2009,  3757 
  • 4c Nishikata T. Abela AR. Huang SL. Lipshutz BH. J. Am. Chem. Soc.  2010,  132:  4978 
  • 4d Wang DH. Wasa M. Giri R. Yu JQ. J. Am. Chem. Soc.  2008,  130:  7190 
  • 4e Wen J. Zhang J. Chen SY. Li J. Yu XQ. Angew. Chem. Int. Ed.  2008,  47:  8897 
  • 4f Nishikata T. Abela AR. Lipshutz BH. Angew. Chem. Int. Ed.  2010,  49:  781 
  • 4g Vogler T. Studer A. Org. Lett.  2008,  10:  129 
  • 4h Zhao JL. Zhang YH. Chen K. J. Org. Chem.  2008,  73:  7428 
  • 5 Bagley MC. Glover C. Merritt EA. Synlett  2007,  2459 
  • 6 Campeau LC. Rousseaux S. Fagnou K. J. Am. Chem. Soc.  2005,  127:  18020 
  • 7 Cho SH. Hwang SJ. Chang S. J. Am. Chem. Soc.  2008,  130:  9254 
  • 8 Ackermann L. Fenner S. Chem. Commun.  2011,  47:  430 
  • 9 Duric S. Tzschucke CC. Org. Lett.  2011,  13:  2310 
  • 10a Seiple IB. Su S. Rodriguez RA. Gianatassio R. Fujiwara Y. Sobel AL. Baran PS. J. Am. Chem. Soc.  2010,  132:  13194 
  • 10b Fujiwara Y. Domingo V. Seiple IB. Gianatassio R. Bel MD. Baran PS. J. Am. Chem. Soc.  2011,  133:  3292 
  • 11 Deng GJ. Ueda K. Yanagisawa S. Itami K. Li CJ. Chem. Eur. J.  2009,  15:  333 
  • 12a Sun CL. Li H. Yu DG. Yu M. Zhou X. Lu XY. Huang K. Zheng SF. Li BJ. Shi ZJ. Nat. Chem.  2010,  2:  1044 
  • 12b Shirakawa E. Itoh K. Higashino T. Hayashi T. J. Am. Chem. Soc.  2010,  132:  15537 
  • 12c Liu W. Cao H. Zhang H. Zhang H. Chung KH. He C. Wang HB. Kwong FY. Lei AW. J. Am. Chem. Soc.  2010,  132:  16737 
13

General Procedure for this Reaction A 50 mL vial was charged with a magnetic stir bar, pyridine N-oxide (1a, 1.5 mmol), phenylboronic acid (2a, 1.0 mmol), AgNO3 (0.2 mmol), K2S2O8 (3.0 mmol), followed by CH2Cl2 and deionized H2O (1:1, v/v, 30 mL in total). After stirring at r.t. for 18 h, the reaction mixture was filtered through Celite (washed with MeOH and CH2Cl2), extracted with CH2Cl2 (3 × 10 mL). The combined organic phase was dried over Na2SO4, then evaporated under reduced pressure, and the isolated yield was obtained by flash chromatography column on silica gel (gradient eluent of MeOH in CH2Cl2:
1-5%, v/v).

14

The metal sources used here [AgNO3, Cu(OAc)2, CuCl2, FeCl3] were all purchased from Aladdin Company in Shanghai. AR grade of AgNO3 (>99.8%), AR grade of Cu(OAc)2 (anhyd, >99.0%), AR grade of CuCl2 (anhyd, >98.0%), AR grade of FeCl3 (anhyd, >97.5%).
2-Phenylpyridine N -Oxide (3aa) 6 ¹H NMR (400 MHz, CDCl3, 293 K): δ = 7.26-7.33 (m, 1 H), 7.41-7.45 (m, 1 H), 7.47-7.53 (m, 4 H), 7.80-7.83 (m, 2 H), 8.48 (d, J = 6.4 Hz, 1 H). ¹³C NMR (100 MHz, CDCl3, 293 K): δ = 149.4, 140.6, 132.6, 129.7, 129.3, 128.3, 127.5, 126.0, 124.6. Mp 144-146 ˚C (CH2Cl2).
2-(2-Methoxyphenyl)-6-methylpyridine N -Oxide (3bb) ¹H NMR (400 MHz, CDCl3, 293 K): δ = 7.40-7.45 (t, J = 8.4 Hz, 1 H), 7.35-7.37 (d, J = 7.6 Hz, 1 H), 7.16-7.25 (m, 3 H), 6.99-7.06 (m, 2 H), 3.80 (s, 3 H), 2.57 (s, 3 H). ¹³C NMR (100 MHz, CDCl3, 293 K): δ = 157.3, 149.5, 147.9, 130.7, 125.9, 125.2, 124.1, 122.9, 120.5, 111.2, 55.8, 18.4. ESI-MS: m/z = 216.0 [M + 1]+. ESI-HRMS: m/z [M + H]+ calcd for C13H14NO2 +: 216.1025; found: 216.1021.
2-(2-Methylphenyl)pyridine N -Oxide (3bc) 6 ¹H NMR (400 MHz, CDCl3, 293 K): δ = 8.37 (d, J = 4.8 Hz, 1 H), 7.36-7.40 (m, 1 H), 7.24-7.32 (m, 6 H), 2.25 (s, 3 H). ¹³C NMR (100 MHz, CDCl3, 293 K): δ = 150.8, 140.1, 137.8, 132.9, 130.1, 129.6, 129.3, 128.0, 125.9, 125.4, 125.0, 19.5. Mp 107-109 ˚C (CH2Cl2).
2-(4-Methoxyphenyl)pyridine N -Oxide (3ad) 6 ¹H NMR (400 MHz, CDCl3, 293 K): δ = 8.35 (d, J = 6.4 Hz, 1 H), 7.80 (d, J = 8.8 Hz, 2 H), 7.43 (d, J = 7.6 Hz, 1 H), 7.32 (t, J = 7.6 Hz, 1 H), 7.21 (t, J = 6.4 Hz, 1 H), 7.02 (d, J = 8.8 Hz, 2 H), 3.87 (s, 3 H). ¹³C NMR (100 MHz, CDCl3, 293 K): δ = 160.7, 149.2, 140.6, 130.9, 127.1, 126.7, 124.6, 123.9, 113.8, 55.4. Mp 120-122 ˚C (CH2Cl2).
2-(3-Acetylphenyl)pyridine N -Oxide (3ae) ¹H NMR (400 MHz, CDCl3, 293 K): δ = 8.35-8.39 (m, 2 H), 8.07 (t, J = 8.0 Hz, 2 H), 7.60 (t, J = 8.0 Hz, 1 H), 7.50 (t, J = 6.0 Hz, 1 H), 7.36 (t, J = 7.2 Hz, 1 H), 7.26-7.31 (m, 1 H), 2.65 (s, 3 H). ¹³C NMR (100 MHz, CDCl3, 293 K): δ = 197.6, 148.3, 140.5, 137.1, 133.9, 133.0, 129.3, 128.6, 127.4, 126.2, 125.2, 26.7. ESI-MS: m/z [M + 1]+ = 214.1. ESI-HRMS: m/z [M + H]+ calcd for C13H12NO2 +: 214.0868; found: 214.0866.