Synthesis 2012(4): 489-503  
DOI: 10.1055/s-0031-1290158
REVIEW
© Georg Thieme Verlag Stuttgart ˙ New York

Transition-Metal-Catalyzed Enantioselective Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Nucleophiles

Yoshiaki Nishibayashi*
Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
Fax: +81(3)58411175; e-Mail: ynishiba@sogo.t.u-tokyo.ac.jp;
Further Information

Publication History

Received 2 November 2011
Publication Date:
16 January 2012 (online)

Abstract

Recent advances in the transition-metal-catalyzed enantioselective propargylic substitution reactions of propargylic alcohol derivatives with nucleophiles are reviewed in this article. After the disclosure of the first example of a ruthenium-catalyzed propargylic alkylation, various types of enantioselective propargylic substitution reactions, including enantioselective propargylation of aromatic compounds, have been reported in the last eight years. In addition, a variety of enantioselective propargylic alkylations use two distinct catalysts, where the two catalysts work cooperatively to promote the asymmetric reactions.

1 Introduction

2 Ruthenium-Catalyzed Enantioselective Propargylic Substitution Reactions

2.1 Propargylic Alkylation

2.2 Propargylation of Aromatic Compounds with Propargylic Alcohols

2.3 Propargylic Substitution Reactions of Propargylic Alcohols with Alkenes

2.4 Cycloadditions between Propargylic Alcohols and 2-Naphthols

3 Copper-Catalyzed Enantioselective Propargylic Substitution Reactions

3.1 Propargylic Amination

3.2 Ring-Opening Reactions of Ethynyl Epoxides

3.3 Propargylic Alkylation

3.4 Propargylation of Indoles

4 Cooperative Enantioselective Propargylic Alkylations ­Using Transition-Metal Catalysts and Organocatalysts

4.1 With Ruthenium Catalysts

4.2 With Copper Catalysts

4.3 With Lewis Acid Catalysts

5 Cooperative Reactions Using Distinct Transition-Metal Catalysts

6 Miscellaneous Reactions

7 Conclusion

    References

  • For selected reviews, see:
  • 1a Tsuji J. Palladium Reagents and Catalysts   Wiley; New York: 1995.  p.290 
  • 1b Trost BM. Van Vranken DL. Chem. Rev.  1996,  96:  395 
  • 1c Trost BM. Lee CB. In Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; New York: 2000.  p.593 
  • 1d Trost BM. Crawley ML. Chem. Rev.  2003,  103:  2921 
  • 1e Nishibayashi Y. Uemura S. In Comprehensive Organometallic Chemistry III   Vol. 11:  Crabtree RH. Mingos DMP. Elsevier; Amsterdam: 2007.  p.75 
  • 1f Lu Z. Ma S. Angew. Chem. Int. Ed.  2008,  47:  258 
  • 2a Brandsma L. Preparative Acetylene Chemistry   2nd ed.:  Elsevier; Amsterdam: 1988. 
  • 2b Modern Acetylene Chemistry   Stang PJ. Diederich F. VCH; Weinheim: 1995. 
  • 2c Acetylene Chemistry   Diederich F. Stang PJ. Tykwinski RR. Wiley-VCH; Weinheim: 2005. 
  • 2d Brandsma L. Synthesis of Acetylenes Allenes and Cumulenes   Elsevier; Amsterdam: 2004. 
  • For recent reviews, see:
  • 3a Tejedor D. López-Tosco S. Cruz-Acosta F. Méndez-Abt G. García-Tellado F. Angew. Chem. Int. Ed.  2009,  48:  2090 
  • 3b de Parrodi CA. Walsh PJ. Angew. Chem. Int. Ed.  2009,  48:  4679 
  • For recent reviews, see:
  • 4a Nicholas KM. Acc. Chem. Res.  1987,  20:  207 
  • 4b Caffyn AJM. Nicholas KM. In Comprehensive Organometallic Chemistry II   Vol. 12:  Abel EW. Stone FGA. Wilkinson G. Pergamon; Oxford: 1995.  p.685 
  • 4c Green JR. Curr. Org. Chem.  2001,  5:  809 
  • 4d Müller TJJ. Eur. J. Org. Chem.  2001,  2021 
  • 4e Díaz DD. Betancort JM. Martín VS. Synlett  2007,  343 
  • Asymmetric versions of the Nicholas reaction have already been reported, see:
  • 5a Nicholas KM. Mulvaney M. Bayer M. J. Am. Chem. Soc.  1980,  102:  2508 
  • 5b Ljungdahl N. Pera NP. Andersson KHO. Kann N. Synlett  2008,  394 
  • 5c As an alternative to the enantioselective Nicholas reaction, a stepwise propargylic alkylation of propargylic alcohols has been reported by using a stoichiometric amount of ruthenium complexes bearing an optically active diphosphine such as BINAP. See: Nishibayashi Y. Imajima H. Onodera G. Uemura S. Organometallics  2005,  24:  4106 
  • 6a Nishibayashi Y. Wakiji I. Hidai M. J. Am. Chem. Soc.  2000,  122:  11019 
  • 6b Nishibayashi Y. Wakiji I. Ishii Y. Uemura S. Hidai M. J. Am. Chem. Soc.  2001,  123:  3393 
  • 6c Inada Y. Nishibayashi Y. Hidai M. Uemura S. J. Am. Chem. Soc.  2002,  124:  15172 
  • 6d Nishibayashi Y. Yoshikawa M. Inada Y. Milton MD. Hidai M. Uemura S. Angew. Chem. Int. Ed.  2003,  42:  2681 
  • 6e Milton MD. Inada Y. Nishibayashi Y. Uemura S. Chem. Commun.  2004,  2712 
  • 6f Milton MD. Onodera G. Nishibayashi Y. Uemura S. Org. Lett.  2004,  6:  3993 
  • 6g Nishibayashi Y. Milton MD. Inada Y. Yoshikawa M. Wakiji I. Hidai M. Uemura S. Chem. Eur. J.  2005,  11:  1433 
  • 6h Onodera G. Matsumoto H. Milton MD. Nishibayashi Y. Uemura S. Org. Lett.  2005,  7:  4029 
  • 6i Onodera G. Matsumoto H. Nishibayashi Y. Uemura S. Organometallics  2005,  24:  5799 
  • 6j Onodera G. Nishibayashi Y. Uemura S. Organometallics  2006,  25:  35 
  • 6k Nishibayashi Y. Shinoda A. Miyake Y. Matsuzawa H. Sato M. Angew. Chem. Int. Ed.  2006,  45:  4835 
  • 6l Yada Y. Miyake Y. Nishibayashi Y. Organometallics  2008,  27:  3614 
  • 6m Yamauchi Y. Miyake Y. Nishibayashi Y. Organometallics  2009,  28:  48 
  • For recent reviews of transition-metal-allenylidene complexes, see:
  • 7a Bruneau C. Dixneuf PH. Angew. Chem. Int. Ed.  2006,  45:  2176 
  • 7b Metal Vinylidenes and Allenylidenes in Catalysis: From Reactivity to Applications in Synthesis   Bruneau C. Dixneuf PH. Wiley-VCH; Weinheim: 2008. 
  • 7c Cadierno V. Gimeno J. Chem. Rev.  2009,  109:  3512 
  • 8a Yamauchi Y. Onodera G. Sakata K. Yuki M. Miyake Y. Uemura S. Nishibayashi Y. J. Am. Chem. Soc.  2007,  129:  5175 
  • 8b Yamauchi Y. Yuki M. Tanabe Y. Miyake Y. Inada Y. Uemura S. Nishibayashi Y. J. Am. Chem. Soc.  2008,  130:  2908 
  • 8c Yuki M. Miyake Y. Nishibayashi Y. Organometallics  2010,  29:  5994 
  • 8d Miyazaki T. Tanabe Y. Yuki M. Miyake Y. Nishibayashi Y. Organometallics  2011,  30:  3194 
  • For reviews on catalytic propargylic substitution reactions, see:
  • 9a Nishibayashi Y. Uemura S. Curr. Org. Chem.  2006,  10:  135 
  • 9b Nishibayashi Y. Uemura S. In Comprehensive Organometallic Chemistry III   Vol. 11:  Crabtree RH. Mingos DMP. Elsevier; Amsterdam: 2007.  p.123 
  • 9c Kabalka GW. Yao M.-L. Curr. Org. Synth.  2008,  5:  28 
  • 9d Ljungdahl N. Kann N. Angew. Chem. Int. Ed.  2009,  48:  642 
  • 9e Miyake Y. Uemura S. Nishibayashi Y. ChemCatChem  2009,  1:  342 
  • 9f Detz RJ. Hiemstra H. van Maarseveen JH. Eur. J. Org. Chem.  2009,  6263 
  • 9g Ding C.-H. Hou X.-L. Chem. Rev.  2011,  111:  1914 
  • 10a Dev S. Imagawa K. Mizobe Y. Cheng G. Wakatsuki Y. Yamazaki H. Hidai M. Organometallics  1989,  8:  1232 
  • 10b Matsuzaka H. J.-P. Ogino T. Nishio M. Nishibayashi Y. Ishii Y. Uemura S. Hidai M. J. Chem. Soc., Dalton Trans.  1996,  4307 
  • 10c J.-P. Masui D. Ishii Y. Hidai M. Chem. Lett.  1998,  1003 
  • 10d Hidai M. Mizobe Y. Can. J. Chem.  2005,  83:  358 ; and references cited therein
  • 11a Nishibayashi Y. Imajima H. Onodera G. Hidai M. Uemura S. Organometallics  2004,  23:  26 
  • 11b Nishibayashi Y. Imajima H. Onodera G. Inada Y. Hidai M. Uemura S. Organometallics  2004,  23:  5100 
  • 11c Miyake Y. Endo S. Nomaguchi Y. Yuki M. Nishibayashi Y. Organometallics  2008,  27:  4017 
  • 11d Miyake Y. Endo S. Yuki M. Tanabe Y. Nishibayashi Y. Organometallics  2008,  27:  6039 
  • 11e Tanabe Y. Kanao K. Miyake Y. Nishibayashi Y. Organometallics  2009,  28:  1138 
  • The result of the density functional theory calculation on the model reaction also supports the proposed reaction pathway of the ruthenium-catalyzed propargylic substitution reactions of propargylic alcohols with nucleophiles, where ruthenium-allenylidene complexes work as key intermediates. See:
  • 12a Ammal SC. Yoshikai N. Inada Y. Nishibayashi Y. Nakamura E. J. Am. Chem. Soc.  2005,  127:  9428 
  • 12b Sakata K. Miyake Y. Nishibayashi Y. Chem. Asian J.  2009,  4:  81 
  • 13 Nishibayashi Y. Onodera G. Inada Y. Hidai M. Uemura S. Organometallics  2003,  22:  873 
  • 14 Inada Y. Nishibayashi Y. Uemura S. Angew. Chem. Int. Ed.  2005,  44:  7715 
  • 15 Kanao K. Tanabe Y. Miyake Y. Nishibayashi Y. Organometallics  2010,  29:  2381 
  • 16a Nishibayashi Y. Yoshikawa M. Inada Y. Hidai M. Uemura S. J. Am. Chem. Soc.  2002,  124:  11846 
  • 16b Nishibayashi Y. Inada Y. Yoshikawa M. Hidai M. Uemura S. Angew. Chem. Int. Ed.  2003,  42:  1495 
  • 16c Inada Y. Yoshikawa M. Milton MD. Nishibayashi Y. Uemura S. Eur. J. Org. Chem.  2006,  881 
  • 17a Matsuzawa H. Miyake Y. Nishibayashi Y. Angew. Chem. Int. Ed.  2007,  46:  6488 
  • 17b Kanao K. Matsuzawa H. Miyake Y. Nishibayashi Y. Synthesis  2008,  3869 
  • 18 Matsuzawa H. Kanao K. Miyake Y. Nishibayashi Y. Org. Lett.  2007,  9:  5561 
  • 19 Kanao K. Miyake Y. Nishibayashi Y. Organometallics  2009,  28:  2920 
  • 20 For a recent review, see: Catalytic Asymmetric Friedel-Crafts Alkylations   Bandini M. Umani-Ronchi A. Wiley-VCH; Weinheim: 2009. 
  • 21a Nishibayashi Y. Inada Y. Hidai M. Uemura S. J. Am. Chem. Soc.  2003,  125:  6060 
  • 21b Nishibayashi Y. Yoshikawa M. Inada Y. Hidai M. Uemura S. J. Org. Chem.  2004,  69:  3408 
  • 21c Daini M. Yoshikawa M. Inada Y. Uemura S. Sakata K. Kanao K. Miyake Y. Nishibayashi Y. Organometallics  2008,  27:  2046 
  • 21d Fukamizu K. Miyake Y. Nishibayashi Y. Angew. Chem. Int. Ed.  2009,  48:  2534 
  • 22 Fukamizu K. Miyake Y. Nishibayashi Y. J. Am. Chem. Soc.  2008,  130:  10498 
  • 23 Nishibayashi Y. Inada Y. Hidai M. Uemura S. J. Am. Chem. Soc.  2002,  124:  7900 
  • 24 Kanao K. Miyake Y. Nishibayashi Y. Organometallics  2010,  29:  2126 
  • 25a Imada Y. Yuasa M. Nakamura I. Murahashi S.-I. J. Org. Chem.  1994,  59:  2282 
  • 25b Geri R. Polizzi C. Lardicci L. Caporusso AM. Gazz. Chim. Ital.  1994,  124:  241 
  • 26 Godfrey JD. Mueller RH. Sedergran TC. Soundararajan N. Colandrea VJ. Tetrahedron Lett.  1994,  35:  6405 
  • 27a Detz RJ. Delville MME. Hiemstra H. van Maarseveen JH. Angew. Chem. Int. Ed.  2008,  47:  3777 
  • 27b

    Prof. van Maarseveen and co-workers achieved the first enantioselective propargylic amination and presented a part of their result at the PAC Symposium 2007 (March 1, 2007, Utrecht).

  • 28a Hattori G. Matsuzawa H. Miyake Y. Nishibayashi Y. Angew. Chem. Int. Ed.  2008,  47:  3781 
  • 28b Hattori G. Sakata K. Matsuzawa H. Tanabe Y. Miyake Y. Nishibiyashi Y. J. Am. Chem. Soc.  2010,  132:  10592 
  • 29a No copper-allenylidene complex has been isolated to date, but the first example of a silver-allenylidene complex was reported in 2009: Asay M. Donnadieu B. Schoeller WW. Bertrand G. Angew. Chem. Int. Ed.  2009,  48:  4796 
  • 29b The first example of a palladium-allenylidene complex was also reported in 2009: Kessler F. Szesni N. Põhako K. Weibert B. Fischer H. Organometallics  2009,  28:  348 
  • 30 Yoshida A. Hattori G. Miyake Y. Nishibayashi Y. Org. Lett.  2011,  13:  2460 
  • 31 Detz RJ. Abiri Z. le Griel R. Hiemstra H. van Maarseveen JH. Chem. Eur. J.  2011,  17:  5921 
  • 32 Hattori G. Miyake Y. Nishibayashi Y. ChemCatChem  2010,  2:  155 
  • 33 Fürstner A. Stimson CC. Angew. Chem. Int. Ed.  2007,  46:  8845 
  • 34 Hattori G. Yoshida A. Miyake Y. Nishibayashi Y. J. Org. Chem.  2009,  74:  7603 
  • 35 Fang P. Hou X.-L. Org. Lett.  2009,  11:  4612 
  • For recent reviews, see:
  • 36a Asymmetric Organocatalysis   Berkessel A. Gröger H. Wiley-VCH; Weinheim: 2005. 
  • 36b Enantioselective Organocatalysis   Dalko PI. Wiley-VCH; Weinheim: 2007. 
  • 36c Asymmetric Organocatalysis   List B. Springer; Heidelberg: 2010. 
  • For recent reviews, see:
  • 37a Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev.  2007,  107:  5471 
  • 37b Enders D. G rondal C. Hüttl MRM. Angew. Chem. Int. Ed.  2007,  46:  1570 
  • 37c Dondoni A. Massi A. Angew. Chem. Int. Ed.  2008,  47:  4638 
  • 37d Melchiorre P. Marigo M. Carlone A. Bartoli G. Angew. Chem. Int. Ed.  2008,  47:  6138 
  • 37e MacMillan DWC. Nature  2008,  455:  304 
  • 37f Bertelsen S. Jørgensen KA. Chem. Soc. Rev.  2009,  38:  2178 
  • 37g Grondal C. Jeanty M. Enders D. Nat. Chem.  2010,  2:  167 
  • 38a Enders D. Hüttl MRM. Grondal C. Raabe G. Nature  2006,  441:  861 
  • 38b Ishikawa H. Suzuki T. Hayashi Y. Angew. Chem. Int. Ed.  2009,  48:  1304 
  • 39 Ikeda M. Miyake Y. Nishibayashi Y. Angew. Chem. Int. Ed.  2010,  49:  7289 
  • 40 Yoshida A. Ikeda M. Hattori G. Miyake Y. Nishibayashi Y. Org. Lett.  2011,  13:  592 
  • 41 Motoyama K. Ikeda M. Miyake Y. Nishibayashi Y. Eur. J. Org. Chem.  2011,  2239 
  • 42 Capdevila MG. Benfatti F. Zoli L. Stenta M. Cozzi PG. Chem. Eur. J.  2010,  16:  11237 
  • 43 Sinisi R. Vita MV. Gualandi A. Emer E. Cozzi PG. Chem. Eur. J.  2011,  17:  7404 
  • 44a Sawamura M. Sudoh M. Ito Y. J. Am. Chem. Soc.  1996,  118:  3309 
  • 44b Kamijo S. Yamamoto Y. Angew. Chem. Int. Ed.  2002,  41:  3230 
  • 44c Sammis GM. Danjo H. Jacobsen EN. J. Am. Chem. Soc.  2004,  126:  9928 
  • 44d Corkey BK. Toste FD. J. Am. Chem. Soc.  2005,  127:  17168 
  • 44e Trost BM. Luan X. J. Am. Chem. Soc.  2011,  133:  1706 
  • 44f Gu Z. Herrmann AT. Zakarian A. Angew. Chem. Int. Ed.  2011,  50:  7136 
  • 44g Matsuzawa A. Mashiko T. Kumagai N. Shibasaki M. Angew. Chem. Int. Ed.  2011,  50:  7616 
  • 45 Ikeda M. Miyake Y. Nishibayashi Y. Chem. Eur. J.  2012,  18: in press; DOI: 10.1002/chem.201103892
  • 46 Smith SW. Fu GC. Angew. Chem. Int. Ed.  2008,  47:  9334 
  • 47 Smith SW. Fu GC. J. Am. Chem. Soc.  2008,  130:  12645