Synthesis 2012; 44(8): 1183-1189
DOI: 10.1055/s-0031-1290579
special topic
© Georg Thieme Verlag Stuttgart · New York

μ-Oxo-Bridged Hypervalent Iodine(III) Compound as an Extreme Oxidant for Aqueous Oxidations

Toshifumi Dohi
a   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan, Fax: +81(77)5615829   Email: kita@ph.ritsumei.ac.jp
,
Tomofumi Nakae
a   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan, Fax: +81(77)5615829   Email: kita@ph.ritsumei.ac.jp
,
Naoko Takenaga
b   Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
,
Teruyoshi Uchiyama
a   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan, Fax: +81(77)5615829   Email: kita@ph.ritsumei.ac.jp
,
Kei-ichiro Fukushima
a   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan, Fax: +81(77)5615829   Email: kita@ph.ritsumei.ac.jp
,
Hiromichi Fujioka
b   Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
,
Yasuyuki Kita*
a   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan, Fax: +81(77)5615829   Email: kita@ph.ritsumei.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 14 February 2012

Accepted: 20 February 2012

Publication Date:
16 March 2012 (online)


Abstract

We have found that in aqueous oxidations the μ-oxo-bridged hypervalent iodine trifluoroacetate reagent 1 {[(PhI(OCOCF3)]2O} is generally more reactive than the corresponding monomeric reagent, especially toward phenolic substrates. μ-Oxo-bridged 1 in aqueous media thus provided dearomatized quinones 3 in excellent yields in most cases compared to conventional phenyliodine(III) diacetate and bis(trifluoroacetate), as a result of the rapid oxidation of both phenols and naphthols 2. Furthermore, the oxidation reactions proceeded even in water using water-soluble μ-oxo oxidant 1, which has promise for μ-oxo-bridged reagent 1 to become the favored reagent over hydrophobic phenyliodine(III) diacetate and bis(trifluoroacetate).

 
  • References

    • 1a The Chemistry of Quinonoid Compounds, Part 2. Patai S. Wiley; New York: 1988
    • 1b Naturally Occurring Quinones IV Recent Advances . Thomson RH. Blackie Academic & Professional; London: 1997
    • 1c Quideau S, Pouysegu L. Org. Prep. Proced. Int. 1999; 31: 617
    • 1d Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
    • 1e Decker H, Schweikardt T, Tuczek F. Angew. Chem. Int. Ed. 2006; 45: 4546
    • 1f Bayen S, Barooah N, Sharma RJ, Sen TK, Karmakar A, Baruah JB. Dyes Pigm. 2007; 75: 770
    • 1g Dunlap T, Chandrasena RE. P, Wang X, Sinha V, Wang Z, Thatcher GR. J. Chem. Res. Toxicol. 2007; 20: 1903
    • 1h Klan P, Wirz J. Photochemistry of Organic Compounds: From Concepts to Practice . Wiley; New York: 2009. see also refs. 3 and 4
  • 2 Our SciFinder® search detected more than ten thousand hits of references dealing with quinone structures in the years of 2010 and 2011, respectively
    • 3a Dudfield PJ In Comprehensive Organic Synthesis . Vol. 7. Trost BM, Fleming I. Pergamon; Oxford: 1991: 345
    • 3b Gallagher PT. Contemp. Org. Synth. 1996; 3: 433
    • 3c Akai S, Kita Y. Org. Prep. Proced. Int. 1998; 30: 603
    • 3d Owton WM. J. Chem. Soc., Perkin Trans. 1 1999; 2409
    • 3e Abraham I, Joshi R, Pardasani P, Pardasani RT. J. Braz. Chem. Soc. 2011; 22: 385

      For examples of recently reported methods, see:
    • 4a Ali MH, Niedbalski M, Bohnert G, Bryant D. Synth. Commun. 2006; 36: 1751
    • 4b Suante H, Mahanti MK. Oxid. Commun. 2006; 29: 266
    • 4c Tajbakhsh M, Hosseinzadeh R, Sadatshahabi M. Synth. Commun. 2005; 35: 1547
    • 4d Hashemi MM, Akhbari M. Russ. J. Org. Chem. 2005; 41: 935
    • 4e Lee CW, Jin SH, Yoon KS, Jeong HM, Chi K. Tetrahedron Lett. 2009; 50: 559
    • 4f Tajbakhsh M, Lakouraj MM, Ramzanian-Lehmali F. Synlett 2006; 1724
    • 4g Moeller K, Wienhoefer G, Schroeder K, Join B, Junge K, Beller M. Chem.–Eur. J. 2010; 16: 10300
    • 4h Derikvand F, Bigi F, Maggi R, Piscopo CG, Sartori G. J. Catal. 2010; 271: 99
    • 4i Romanelli GP, Villabrille PI, Vazquez PG, Caceres CV, Tundo P. Lett. Org. Chem. 2008; 5: 332
    • 4j Bernini R, Mincione E, Barantini M, Fabrizi G, Pasqualetti M, Tempesta S. Tetrahedron 2006; 62: 7733
    • 4k Zalomaeva OV, Sorokin AB. New J. Chem. 2006; 30: 1768
    • 4l Iwasa S, Fakhruddin A, Widagdo HS, Nishiyama H. Adv. Synth. Catal. 2005; 347: 517
    • 4m Kim S, Kim D, Park J. Adv. Synth. Catal. 2009; 351: 2573
    • 4n Miyamura H, Shiramizu M, Matsubara R, Kobayashi S. Angew. Chem. Int. Ed. 2008; 47: 8093
    • 4o Oelgemoller M, Healy N, de Oliveira L, Jung C, Mattay J. Green Chem. 2006; 8: 831
    • 5a Moriarty RM, Prakash O. Org. React. 2001; 57: 327
    • 5b Barret R, Daudon M. Tetrahedron Lett. 1990; 31: 4871
    • 5c Lebrasseur N, Fan G.-J, Oxoby M, Looney MA, Quideau S. Tetrahedron 2005; 61: 1551
    • 5d Ficht S, Mulbaier M, Giannis A. Tetrahedron 2001; 57: 4863
    • 5e Pelter A, Elgendy S. Tetrahedron Lett. 1988; 29: 677
    • 5f Ley SV, Thomas AW, Finch H. J. Chem. Soc., Perkin Trans. 1 1999; 669
    • 5g Rocaboy C, Gladysz JA. Chem.–Eur. J. 2003; 9: 88
    • 5h Tesevic V, Gladysz JA. Green Chem. 2005; 7: 833
    • 5i Wu A, Duan Y, Xu D, Penning TM, Harvey RG. Tetrahedron 2010; 66: 2111

    • For recent reviews, see:
    • 5j Ciufolini MA, Braun NA, Canesi S, Ousmer M, Chang J, Chai D. Synthesis 2007; 3759
    • 5k Quideau S, Pouységu L, Deffieux D. Synlett 2008; 467
    • 5l Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 6a Tamura Y, Yakura T, Haruta J, Kita Y. J. Org. Chem. 1987; 52: 3927
    • 6b Tamura Y, Yakura T, Tohma H, Kikuchi K, Kita Y. Synthesis 1989; 126
    • 6c Kita Y, Yakura T, Tohma H, Kikuchi K, Tamura Y. Tetrahedron Lett. 1989; 30: 1119
    • 6d Kita Y, Tohma H, Kikuchi K, Inagaki M, Yakura T. J. Org. Chem. 1991; 56: 435

    • For a review, see:
    • 6e Tohma H, Kita Y. Top. Curr. Chem. 2003; 224: 209

    • Applications of phenolic oxidations in our laboratory:
    • 6f Kita Y, Tohma H, Inagaki M, Hatanaka K, Yakura T. J. Am. Chem. Soc. 1992; 114: 2175
    • 6g Kita Y, Takada T, Gyoten M, Tohma H, Zenk MH, Eichhorn J. J. Org. Chem. 1996; 61: 5857
    • 6h Kita Y, Egi M, Takada T, Tohma H. Synthesis 1999; 885
    • 6i Kita Y, Arisawa M, Gyoten M, Nakajima M, Hamada R, Tohma H, Takada T. J. Org. Chem. 1998; 63: 6625
    • 6j Kita Y, Egi M, Tohma H. Chem. Commun. 1999; 143
    • 6k Tohma H, Harayama Y, Hashizume M, Iwata M, Kiyono Y, Egi M, Kita Y. J. Am. Chem. Soc. 2003; 125: 11235
    • 6l Hamamoto H, Shiozaki Y, Nambu H, Hata K, Tohma H, Kita Y. Chem.–Eur. J. 2004; 10: 4977
    • 6m Wada Y, Otani K, Endo N, Harayama Y, Kamimura D, Yoshida M, Fujioka H, Kita Y. Org. Lett. 2009; 11: 4048

    • For recent investigations, see:
    • 6n Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
    • 6o Dohi T, Maruyama A, Minamitsuji Y, Takenaga N, Kita Y. Chem. Commun. 2007; 1224
    • 6p Dohi T, Minamitsuji Y, Maruyama A, Hirose S, Kita Y. Org. Lett. 2008; 10: 3559
    • 6q Minamitsuji Y, Kato D, Fujioka H, Dohi T, Kita Y. Aust. J. Chem. 2009; 62: 648
    • 6r Dohi T, Yamaoka N, Kita Y. Tetrahedron 2010; 66: 5775

      For recent reviews and publications, see:
    • 7a Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. In Topics in Current Chemistry. Wirth T. Springer Verlag; Berlin: 2003
    • 7b Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
    • 7c Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 7d Dohi T, Ito M, Yamaoka N, Morimoto K, Fujioka H, Kita Y. Tetrahedron 2009; 65: 10797
    • 7e Yusubov MS, Zhdankin VV. Mendeleev Commun. 2010; 20: 185
    • 7f Silva LF. Jr, Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
    • 7g Zhdankin VV. J. Org. Chem. 2011; 76: 1185
    • 7h Kita Y, Dohi T, Morimoto K. J. Synth. Org. Chem., Jpn. 2011; 69: 1241
  • 8 Encyclopedia of Reagents for Organic Synthesis. Paquette LA, Crich D, Fuchs PL, Molander GA. John Wiley & Sons; Chichester: 2009. 2nd ed., Vol. 4 2987 (for PIFA) and Vol. 10: 7797 (for PIDA)

    • The μ-oxo-bridged dimer of phenyliodine trifluoroacetate 1 is a known compound, but its reactivity was not thoroughly investigated:
    • 9a Alcock NW, Waddington TC. J. Chem. Soc. 1963; 4103
    • 9b Gallos J, Varvoglis A, Alcock NW. J. Chem. Soc., Perkin Trans. 1 1985; 757

      X-ray structural data of PIFA:
    • 10a Stergioudis GA, Kokkou SC, Bozopoulos AP, Rentzeperis PJ. Acta Crystallogr. C 1984; 40: 877

    • X-ray structural data of PIDA:
    • 10b Lee C.-K, Mak TC. W, Li W.-K. Acta Crystallogr. B 1977; 33: 1620
    • 11a Alcock NW, Countryman RM, Esperas S, Sawyer JF. J. Chem. Soc., Dalton Trans. 1979; 854
    • 11b Alcock NW, Harrison WD. J. Chem. Soc., Dalton Trans. 1984; 1709
    • 11c Bell R, Morgan KJ. J. Chem. Soc. 1960; 1209

      We have recently revealed notably high reactivity of the μ-oxo-bridged hypervalent iodine compound 1 in organic solvents. See:
    • 12a Dohi T, Uchiyama T, Yamashita D, Washimi N, Kita Y. Tetrahedron Lett. 2011; 52: 2212
    • 12b Takenaga N, Uchiyama T, Kato D, Fujioka H, Dohi T, Kita Y. Heterocycles 2011; 8: 1327

      Typically, excess PIFA was needed to consume substrate 2v entirely:
    • 13a Tohma H, Morioka H, Harayama Y, Hashizume M, Kita Y. Tetrahedron Lett. 2001; 42: 6899
    • 13b Tohma H, Kita Y. J. Synth. Org. Chem., Jpn. 2004; 62: 116

      Examples of hypervalent iodine oxidations in water:
    • 14a Tohma H, Takizawa S, Maegawa T, Kita Y. Angew. Chem. Int. Ed. 2000; 39: 1306
    • 14b Dohi T, Takenaga N, Goto A, Fujioka H, Kita Y. J. Org. Chem. 2008; 73: 7365
    • 14c Takenaga N, Goto A, Yoshimura M, Fujioka H, Dohi T, Kita Y. Tetrahedron Lett. 2009; 50: 3227
    • 14d Thottumkara AP, Vinod TK. Tetrahedron Lett. 2002; 43: 569
    • 14e Ochiai M, Miyamoto K, Yokota Y, Suefuji T, Shiro M. Angew. Chem. Int. Ed. 2005; 44: 75
    • 14f Qian W, Jin E, Bao W, Zhang Y. Tetrahedron 2006; 62: 556
    • 14g Yusubov MS, Yusubova RY, Funk TV, Chi K.-W, Zhdankin VV. Synthesis 2009; 2505
    • 14h Ye Y, Wang L, Fan R. J. Org. Chem. 2010; 75: 1760
    • 14i Panchan W, Chiampanichayakul S, Snyder DL, Yodbuntung S, Pohmakotr M, Reutrakul V, Jaipetch T, Kuhakarn C. Tetrahedron 2010; 66: 2732
    • 14j Zhu C, Ji L, Wei Y. Synthesis 2010; 3121
    • 14k Zhu C, Wei Y. Catal. Lett. 2011; 141: 582

      For stoichiometric and catalytic reactions utilizing related designer μ-oxo-bridged hypervalent iodine species, see:
    • 15a Dohi T, Takenaga N, Fukushima K.-I, Uchiyama T, Kato D, Shiro M, Fujioka H, Kita Y. Chem. Commun. 2010; 46: 7697
    • 15b Dohi T, Nakae T, Ishikado Y, Kato D, Kita Y. Org. Biomol. Chem. 2011; 9: 6899
    • 15c Dohi T, Maruyama A, Takenage N, Senami K, Minamitsuji Y, Fujioka H, Cämmerer S, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 15d Dohi T, Kato D, Hyodo R, Yamashita D, Shiro M, Kita Y. Angew. Chem. Int. Ed. 2011; 50: 3784

      Quinone synthesis using a catalytic amount of an organoiodine compound in a mixed aqueous solvent system was reported:
    • 16a Yakura T, Konishi T. Synlett 2007; 765
    • 16b Yakura T, Omoto M, Yamauchi Y, Tian Y, Ozono A. Tetrahedron 2010; 66: 5833

    • For the concept of catalytic utilization of hypervalent iodine reagents, see our accounts:
    • 16c Dohi T, Kita Y. Kagaku 2006; 61: 68
    • 16d Dohi T, Kita Y. Chem. Commun. 2009; 2073
    • 17a Aly AA, Gomaa MA.-M, El-Din AM. N, Fahmy MS. ARKIVOC 2007; (xvi): 41
    • 17b Murahashi S.-I, Miyaguchi N, Noda S, Naota T, Fujii A, Inubushi Y, Komiya N. Eur. J. Org. Chem. 2011; 5355
    • 17c Moore HW, Sing Y.-LL, Sidhu RS. J. Org. Chem. 1980; 45: 5057
    • 17d Quideau S, Lyvinec G, Marguerit M, Bathany K, Ozanne-Beaudenon A, Buffeteau T, Cavagnat D, Chenede A. Angew. Chem. Int. Ed. 2009; 48: 4605
    • 17e Crosby IT, Rose ML, Collis MP, de Bruyn PJ, Keep PL. C, Robertson AD. Aust. J. Chem. 2008; 61: 768
    • 17f Ratnikov MO, Farkas LE, McLaughlin EC, Chiou G, Choi H, El-Khalafy SH, Doyle MP. J. Org. Chem. 2011; 76: 2585
    • 17g Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Shiro M, Kita Y. Chem. Commun. 2005; 2205
    • 17h Gupta M, Upadhyay SK, Sridhar MA, Mathur P. Inorg. Chim. Acta 2006; 359: 4360
    • 17i Kim S, Kim D, Park J. Adv. Synth. Catal. 2009; 351: 2573
    • 17j Berger S, Rieker A. Tetrahedron 1972; 28: 3123
    • 17k Mehta G, Padma S, Karra SR, Gopidas KR, Cyr DR, Das PK, George MV. J. Org. Chem. 1989; 54: 1342