Synlett 2012(5): 773-777  
DOI: 10.1055/s-0031-1290601
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Mild Pd/Cu-Catalyzed Sila-Sonogashira Coupling of (Hetero)aryl Bromides with (Hetero)arylethynylsilanes under PTC Conditions

Fabio Bellina*, Marco Lessi
Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa, Italy
Fax: +39(050)2219260; e-Mail: bellina@dcci.unipi.it;
Further Information

Publication History

Received 26 December 2011
Publication Date:
28 February 2012 (online)

Abstract

The palladium/copper cocatalyzed sila-Sonogashira reaction of (hetero)arylethynysilanes with (hetero)aryl bromides in toluene and water at 40 ˚C under PTC conditions gave the required di(hetero)arylethynes in moderate to high yields. Activated, deactivated and ortho-substituted (hetero)aryl bromides are well tolerated. This protocol also allowed the preparation of symmetrical diarylethynes by double arylation of 1,2-bis(trimethylsilyl)ethyne.

    References and Notes

  • 1 Tour JM. Acc. Chem. Res.  2000,  33:  791 
  • 2 Pugh VJ. Hu Q.-S. Zuo X. Lewis FD. Pu L. J. Org. Chem.  2001,  66:  6136 
  • 3 Hill DJ. Mio MJ. Prince RB. Hughes TS. Moore JS. Chem. Rev.  2001,  101:  3893 
  • 4 Bunz UHF. Chem. Rev.  2000,  100:  1605 
  • 5 Jenny NM. Mayor M. Eaton TR. Eur. J. Org. Chem.  2011,  4965 
  • 6 Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  16:  4467 
  • Selected reviews:
  • 7a Rossi R. Carpita A. Bellina F. Org. Prep. Proced. Int.  1995,  27:  127 
  • 7b Sonogashira K. In Metal-Catalyzed Reactions   Diederich F. Stang PJ. Wiley-VCH; New York: 1998.  p.203-229  
  • 7c Sonogashira K. J. Organomet. Chem.  2002,  653:  46 
  • 7d Negishi E. Anastasia L. Chem. Rev.  2003,  103:  1979 
  • 7e Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4442 
  • 7f Yin L. Liebscher J. Chem. Rev.  2007,  107:  874 
  • 7g Chinchilla R. Nájera C. Chem. Rev.  2007,  107:  874 
  • 7h Doucet H. Hierso J.-C. Angew. Chem. Int. Ed.  2007,  46:  834 
  • 7i Plenio H. Angew. Chem. Int. Ed.  2008,  47:  6954 
  • 7j McGlacken GP. Fairlamb IJS. Eur. J. Org. Chem.  2009,  4011 
  • 7k Pal M. Synlett  2009,  2896 
  • 8a Cassar L. J. Organomet. Chem.  1975,  93:  253 
  • 8b Dieck HA. Heck FR. J. Organomet. Chem.  1975,  93:  259 
  • For recent examples of Cassar-Heck alkynylation reactions, see:
  • 9a Kawanami H. Matsushima K. Sato M. Ikushima Y. Angew. Chem. Int. Ed.  2007,  46:  5129 
  • 9b Shi S. Zhang Y. Synlett  2007,  1843 
  • 9c Ljungdahl T. Bennur T. Dallas A. Emtenaes H. Maartensson J. Organometallics  2008,  27:  2490 
  • 9d Komáromi A. Tolnai GL. Novák Z. Tetrahedron Lett.  2008,  49:  7294 
  • 9e Lipshutz BH. Chung DW. Rich B. Org. Lett.  2008,  10:  3793 
  • 9f Carpita A. Ribecai A. Tetrahedron Lett.  2009,  50:  204 
  • 9g Bakherad M. Amin AH. Keinvanloo A. Bahramian B. Raeissi M. Tetrahedron Lett.  2010,  51:  5653 
  • 9h Saha D. Dey R. Ranu BC. Eur. J. Org. Chem.  2010,  6067 
  • 9i de Carné-Carnavalet B. Archambeau A. Meyer C. Cossy J. Folléas B. Brayer J.-L. Demoute J.-P. Org. Lett.  2011,  13:  956 
  • 9j Prabakaran K. Khan FN. Jin JS. Tetrahedron Lett.  2011,  52:  2566 
  • 10a Mori A. Kawashima J. Shimada T. Suguro M. Hirabayshi K. Nishihara Y. Org. Lett.  2000,  2:  2935 
  • 10b Kobayashi K. Sugie A. Takahashi M. Masui K. Mori A. Org. Lett.  2005,  7:  5083 
  • 11a Crisp GT. Turner PD. Stephens KA. J. Organomet. Chem.  1998,  570:  219 
  • 11b Eberhard MR. Wang Z. Jensen CM. Chem. Commun.  2002,  818 
  • 12a Herrmann WA. Böhm VPW. Reisinger CP.
    J. Organomet. Chem.  1998,  576:  23 
  • 12b Alonso DA. Nájera C. Pacheco MC. Org. Lett.  2000,  2:  1283 
  • 12c Alonso DA. Nájera C. Pacheco MC. Tetrahedron Lett.  2002,  43:  9365 
  • 12d Alonso DA. Nájera C. Pacheco MC. Adv. Synth. Catal.  2003,  345:  1146 
  • 12e Alacid E. Alonso DA. Botella L. Nájera C. Pacheco MC. Chem. Rec.  2006,  6:  117 
  • Selected papers on Sonogashira coupling reactions in ionic liquids:
  • 13a Deshmukh RR. Rajagopal R. Srinivasan KV. Chem. Commun.  2001,  1544 
  • 13b Fukuyama T. Shinmen M. Nishitani S. Sato M. Ryu I. Org. Lett.  2002,  4:  1691 
  • 13c Park SB. Alper H. Chem. Commun.  2004,  1306 
  • 13d Gholap AR. Venkatesan K. Pasricha R. Daniel T. Lahoti RJ. Srinivasan KV. J. Org. Chem.  2005,  70:  4869 
  • 13e Rahman MT. Fukuyama T. Ryu I. Suzuki K. Yinoemura K. Hughes PF. Nokihara K. Tetrahedron Lett.  2006,  47:  2703 
  • 13f Hierso J.-C. Boudon J. Picquet M. Meunier P. Eur. J. Org. Chem.  2007,  583 
  • 13g de Lima PG. Antunes OAC. Tetrahedron Lett.  2008,  49:  2506 
  • 13h Fukuyama T. Rahman MdT. Maetani S. Ryu I. Chem. Lett.  2011,  40:  1027 
  • 14a Kabalka GW. Wang L. Namboodiri V. Pagni RM. Tetrahedron Lett.  2000,  41:  5151 
  • 14b Erdélyi M. Gogoll A. J. Org. Chem.  2001,  66:  4165 
  • 15a Hay AS. J. Org. Chem.  1960,  25:  1275 
  • 15b Hay AS. J. Org. Chem.  1962,  27:  3320 
  • 15c Siemsen P. Livingston RC. Diederich F. Angew. Chem. Int. Ed.  2000,  39:  2632 
  • 16a Rossi R. Carpita A. Lezzi A. Tetrahedron  1984,  40:  2773 
  • 16b Shultz D. Gwaltney KP. Lee H. J. Org. Chem.  1998,  63:  4034 
  • 16c Pak JJ. Weakley TJR. Haley MM. J. Am. Chem. Soc.  1999,  121:  8182 
  • 16d Nishihara Y. Ikegashira K. Hirabayashi K. Ando J.-I. Mori A. Hiyama T. J. Org. Chem.  2000,  65:  1780 
  • 16e Yang C. Nolan SP. Organometallics  2002,  21:  1020 
  • 16f Mio MJ. Kopel LC. Braun JB. Gadzikwa TL. Hull KL. Brisbois RG. Markworth CJ. Grieco PA. Org. Lett.  2002,  4:  3199 
  • 16g Halbes U. Pale P. Tetrahedron Lett.  2002,  43:  2039 
  • 16h Li G. Wang X. Wang F. Tetrahedron Lett.  2005,  46:  8971 
  • 16i Sørensen U. Pombo-Villar E. Tetrahedron  2005,  61:  2697 
  • 16j Gil-Moltó J. Nájera C. Adv. Synth. Catal.  2006,  348:  1874 
  • 16k Sommer WJ. Weck M. Adv. Synth. Catal.  2006,  348:  2101 
  • 16l Nishihara Y. Inoue E. Okada Y. Takagi K. Synlett  2008,  3041 
  • 16m Nishihara Y. Inoue E. Ogawa D. Okada Y. Noyori S. Takagi K. Tetrahedron Lett.  2009,  50:  4643 
  • 16n Severin R. Reimer J. Doye S. J. Org. Chem.  2010,  75:  3518 
  • 17 Recently, a Pd-free, Cu-catalyzed sila-Sonogashira cross-coupling protocol involving aryl iodides was published: Nishihara Y. Noyori S. Okamoto T. Suetsugu M. Iwasaki M. Chem. Lett.  2011,  40:  972 
  • For a discussion on phase-transfer catalysis in cross-coupling reactions, see:
  • 18a Dehmlow EW. In Aqueous-Phase Organometallic Catalysis   2nd ed.:  Cornils B. Herrmann WA. Wiley-VCH; Weinheim: 2004.  p.272 
  • 18b Mąkosza M. Fedoryński M. ARKIVOC  2006,  (iv):  7 
  • 19 Hundertmart T. Littke AF. Buchwald SL. Fu GC. Org. Lett.  2000,  2:  1729 
  • 20 See, for example: Wuts PGM. Greene TW. In Greene"s Protective Groups in Organic Synthesis   4th ed.:  John Wiley and Sons; Hoboken: 2007.  p.928-929  
  • 21 For an example of protiodesilylation of alkynyltrimethylsilanes with NaOH under PTC conditions, see: Roser J. Eberbach W. Synth. Commun.  1986,  16:  983 
  • 24 Recently, a classical Sonogashira cross-coupling protocol for the synthesis of compounds 3 was published: Moulton BE. Whitwood AC. Duhme-Klair AK. Lynam JM. Fairlamb IJS. J. Org. Chem.  2011,  76:  5320 
22

General Procedure for the Synthesis of Di(hetero)arylethynes 3
To a mixture of alkynyltrimethylsilane 1 (1 mmol), (hetero)aryl bromide 2 (1.1 mmol), PdCl2(PhCN)2 (19.8 mg, 0.05 mmol), t-Bu3PHBF4 (29.0 mg, 0.1 mmol), CuI (19.0 mg, 0.1 mmol), and Bn(n-Bu)3NCl (62.4 mg, 0.2 mmol) in toluene (8 mL) was added a 2.5 M aq solution of NaOH (10 mmol, 4 mL), and the resulting biphasic mixture was stirred under argon at 40 ˚C for the period of time reported in Table  [²] . The degree of completion of the reaction and the composition of the reaction mixture were established by GC and GC-MS analyses of a sample of the crude reaction mixture after it had been treated with a sat. aq NH4Cl solution and extracted with EtOAc. After being cooled to r.t., the reaction mixture was diluted with EtOAc (15 mL) and poured into a sat. aq NH4Cl solution (15 mL), and the resulting mixture was stirred in the open air for 0.5 h and then extracted with EtOAc (4 × 10 mL). The organic extracts were washed with H2O (2 × 5 mL), dried and concentrated under reduced pressure, and the residue was purified by flash cromatography on silica gel. This procedure was employed to prepare di(hetero)arylethynes 3a-e,g-m (Table  [²] , entries 1-5 and 7-10,). The same procedure, but employing BTSE (0.23 mL, 0.17 g, 1.0 mmol) and aryl bromide 2 (2.2 mmol), was also applied to the synthesis of symmetrically substituted diarylethynes 4a-c (Scheme  [³] ).

23

Representative Data for New Compounds
4-(Thiophen-2-ylethynyl)benzaldehyde (3g)
Mp 110-112 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.03 (dd, J = 3.7, 5.0 Hz, 1 H), 7.34 (m, 2 H), 7.63 (d, J = 9.0 Hz, 2 H), 7.84 (d, J = 9.0 Hz, 2 H), 9.99 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 86.87, 92.37, 122.43, 127.40, 128.43, 129.20, 129.62 (2 C), 131.79 (2 C), 132.93, 135.40, 191.39. MS: m/z (%) = 212 (100) [M+], 211 (60), 183 (13), 139 (35), 91 (6). Anal. Calcd for C13H8OS (212.27): C, 73.56; H, 3.80. Found: C, 73.84; H, 3.78.
3-[(3,4-Dimethoxyphenyl)ethynyl]pyridine (3l)
Mp 53-55 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 3.89 (m, 6 H), 6.83 (d, J = 9 Hz, 1 H), 7.05 (s, 1 H), 7.16 (d, J = 6 Hz, 1 H), 7.25 (m, 1 H), 7.77 (d, J = 9 Hz, 1 H), 8.55 (s, 1 H), 8.79 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 55.67, 55.70, 84.48, 92.75, 110.83, 113.99, 114.40, 120.57, 122.91, 124.94, 137.98, 148.06, 148.46, 149.67, 151.85. MS: m/z (%) = 239 (100) [M+], 224 (18), 196 (16), 167 (27), 1543 (12), 127 (12). Anal. Calcd for C15H13NO2 (239.27): C, 75.30; H, 5.48. Found: C, 75.61; H, 5.52.