Synlett 2012; 23(10): 1459-1462
DOI: 10.1055/s-0031-1290681
letter
© Georg Thieme Verlag Stuttgart · New York

Functionalization of Single-Walled Carbon Nanotubes through 1,3-Cyclo­addition of Carbonyl Ylides under Microwave Irradiation

Silvia Tagliapietra
a  Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
,
Giancarlo Cravotto*
a  Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
,
Emanuela Calcio Gaudino
a  Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
,
Sonja Visentin
a  Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
,
Valentina Mussi
b  Nanomed Labs, S.C. Nanobiotecnologie (IST), Largo Rosanna Benzi, 10, 16132 Genova, Italy, Fax: +39(011)6707687   Email: giancarlo.cravotto@unito.it
› Author Affiliations
Further Information

Publication History

Received: 13 February 2012

Accepted after revision: 05 April 2012

Publication Date:
29 May 2012 (online)


Abstract

The solvent-free, microwave-assisted 1,3-dipolar cycloaddition of carbonyl ylides, generated from a series of oxiranes, to SWCNTs (single-walled carbon nanotubes) is described. The procedure is extremely fast and repeatable. The reaction of SWCNTs with benzylidenmalononitrile epoxide afforded a gem-dicyano derivative that is well-suited to further transformation into esters or amides through the Pinner reaction.

 
  • References and Notes

    • 1a Ajayan PM. Chem. Rev. 1999; 99: 1787
    • 1b Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ. Science 2000; 287: 622
    • 1c Postma HW. C, Teepen T, Yao Z, Grifoni M, Dekker C. Science 2001; 293: 76
    • 1d Baughman RH, Zakhidov AA, de Heer WA. Science 2002; 297: 787
  • 2 Carbon Nanotubes: Synthesis, Structure, Properties and Applications . Dresselhaus MS, Dresselhaus G, Avouris P. Springer-Verlag; Berlin: 2001
  • 3 Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev. 2006; 106: 1105
  • 4 Liang F, Chen B. Curr. Med. Chem. 2010; 17: 10
  • 5 Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. J. Am. Chem. Soc. 2002; 124: 760
  • 6 Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M. Chem. Soc. Rev. 2009; 38: 2214
  • 7 Karousis N, Tagmatarchis N, Tasis D. Chem. Rev. 2010; 110: 5366
  • 8 Cravotto G, Garella D, Calcio GaudinoE, Turci F, Bertarione S, Agostini G, Cesano F, Scarano D. New J. Chem. 2011; 35: 915
  • 9 Vàzquez E, Prato M. ACS Nano 2009; 3: 3819
  • 10 Wang Y, Iqbal Z, Mitra S. J. Am. Chem. Soc. 2006; 128: 95
    • 11a Della NegraF, Meneghetti M, Menna E. Fullerenes, Nanotubes, Carbon Nanostruct. 2003; 11: 25
    • 11b Wang Y, Iqbal Z, Mitra S. Carbon 2005; 43: 1015
    • 11c Kakade BA, Pillai VK. Appl. Surf. Sci. 2008; 254: 4936
  • 12 Ghini G, Luconi L, Rossin A, Bianchini C, Giambastiani G, Cicchi S, Lascialfari L, Brandi A, Giannasi A. Chem. Commun. 2010; 46: 252
  • 13 Kumar I, Rana S, Cho JW. Chem. Eur. J. 2011; 17: 11092
  • 14 Sakellariou G, Ji H, Mays JW, Hadjichristidis N, Baskaran D. Chem. Mater. 2007; 19: 6370
  • 15 Li J, Jia G, Zhang Y, Chen Y. Chem. Mater. 2006; 18: 3579
  • 16 Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M. Chem. Commun. 2002; 3050
  • 17 Rana S, Cho JW. Nanoscale 2010; 2: 2550
    • 18a Alvaro M, Atienzar P, de la Cruz P, Delgado JL, Garcia H, Langa F. J. Phys. Chem. B 2004; 108: 12691
    • 18b Tagmatarchis N, Prato M. J. Mater. Chem. 2004; 14: 437
    • 19a Kharisov BI, Kharissova OV, Gomez MJ, Mendez UO. Ind. Eng. Chem. Res. 2009; 48: 545
    • 19b Bakry R, Vallant RM, Najam-Ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK. Int. J. Nanomed. 2007; 2: 639
  • 20 Cravotto G, Cintas P. Chem. Eur. J. 2010; 16: 5246
  • 21 Wang G.-W, Wu P, Yang H.-T. Org. Biomol. Chem. 2009; 7: 1851
    • 22a Hirsch A. Synthesis 1995; 895
    • 22b Diederich F, Thilgen C. Science 1996; 271: 317
    • 22c Hirsch A. Top. Curr. Chem. 1999; 199: 1
    • 22d Tagmatarchis N, Prato M. Synlett 2003; 768
    • 22e Thilgen C, Diederich F. Chem. Rev. 2006; 106: 5049
  • 23 SWCNTs were purchased from Sigma–Aldrich (SWCNT-519308, 50–70% carbon basis, D × L 1.2–1.5 nm × 2–5 μm, bundle dimensions)
    • 24a Palmisano G, Tagliapietra S, Barge A, Binello A, Boffa L, Cravotto G. Synlett 2007; 2041
    • 24b Martina K, Caporaso M, Tagliapietra S, Heropoulos GA, Curini M, Cravotto G. Carbohydr. Res. 2011; 346: 2677
  • 25 Bentabed G, Derdour A, Benhaoua H. Synth. Commun. 2003; 33: 1861
  • 26 Wang G.-W, Yang H.-T, Wu P, Miao C.-B, Xu Y. J. Org. Chem. 2006; 71: 4346
  • 27 Miao C.-B, Tian Z.-Y, Ruan X.-J, Sun X.-Q, Yang H.-T. Heterocycles 2011; 83: 1615
  • 28 Caine D, Procter K, Camel RA. J. Org. Chem. 1984; 49: 2641
  • 29 Sánchez-Castillo A, Noguez C. J. Phys. Chem. C 2010; 114: 9640
  • 30 TGA experiments were performed with a Q600 TA instrument on approximately 10 mg sample with a 60 cm3/min nitrogen flow (99.999% purity) and with a 10 °C/min heating ramp
  • 31 FTIR spectra of the samples in the form of powder, diluted in KBr (0.1% w/w) were recorded with a FT Nicolet 6700 instrument with a DTGS-KBr detector (200 scans), and displayed in transmittance units in Figure 3 and Figure 4
  • 32 Zhang W, Swager TM. J. Am. Chem. Soc. 2007; 129: 7714
  • 33 SEM was performed with the electron column of a CrossBeam 1540xb (Carl Zeiss AG, Oberkochen, Germany) operated at 20 kV. The images shown in Figure 5 were acquired through the in-lens detector with the sample tilted at an angle of 54°. The probe worked at 300 pA (30 μm aperture) and the working distance was 2 mm
  • 34 Raman measurements were performed with a Fourier Transform μ-Raman Spectrometer (Nicolet NXR Thermo-Fisher) using a spot size of 50 μm, an excitation power P = 200 mW, and a spectral resolution of 8 cm–1 (1000 accumulations)