Synlett 2012; 23(10): 1463-1466
DOI: 10.1055/s-0031-1291007
letter
© Georg Thieme Verlag Stuttgart · New York

Sonogashira Reactions of 2,3,4,5-Tetrabromofuran: Synthesis of 2,3,4,5-Tetraalkynylfurans, 2,3,5-Trialkynylfurans and 2,5-Dialkynylfurans

Imran Malik
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
b   Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
,
Zeeshan Ahmad
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
,
Sebastian Reimann
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
c   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
,
Muhammed Nawaz
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
,
Tamás Patonay
d   Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary
,
Peter Langer*
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
c   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 21. März 2012

Accepted: 23. März 2012

Publikationsdatum:
18. Mai 2012 (online)


Abstract

2,3,4,5-Tetrabromofuran is transformed into a variety of alkynyl-substituted furans by regioselective Sonogashira cross-coupling reactions. In this context, the first 2,3,4,5-tetraalkynylfurans and 2,3,5-trialkynylfurans were prepared. 2,3,4,5-Tetraalkynylfurans and 2,5-dialkynyl-3,4-diarylfurans show interesting fluorescence properties.

Supporting Information

 
  • References

    • 1a Hou XL, Yang Z, Wong HN. C In Progress in Heterocyclic Chemistry . Vol. 15. Gribble GW, Gilchrist TL. Pergamon; Oxford: 2003: 167
    • 1b Friedrichsen W In Comprehensive Heterocyclic Chemistry. Vol. 2. Katritzky AR, Rees CW, Scriven EF. V. Elsevier; Amsterdam: 1996: 359
    • 1c Shea KM. Palladium in Heterocyclic Chemistry. Vol. 26. Elsevier; Amsterdam: 2007: 303
    • 2a Culver P, Jacobs RS. Toxicon 1981; 19: 825
    • 2b Missakian MG, Burreson BJ, Schever PJ. Tetrahedron 1975; 31: 2513
    • 2c Shen YC, Chatervedula VS. P, Kuo YH. J. Nat. Prod. 2001; 64: 324
    • 2d Karasawa D, Shatar S, Erdenechimeg A, Okamoto Y, Tateba H, Shimizu S. J. Essent. Oil. Res. 1995; 7: 255
    • 2e Look SA, Burch NT, Fenical W. J. Org. Chem. 1985; 50: 5741
    • 2f Kobayashi M, Mahmud T, Tajima H, Wang W.-Q, Aoki S, Nakagawa S, Mayumi T, Kitagawa I. Chem. Pharm. Bull. 1996; 44: 720
    • 2g Chang HM, Cheng KP, Choang TF, Chow HF, Chui KY, Hon PM, Tan FW. L, Yang Y, Zhong ZP, Lee CM, Sham HL, Chan CF, Cui YX, Wong HN. C. J. Org. Chem. 1990; 55: 3537
    • 2h Bernard R, Cardani C, Selva D, Baggini A, Pavan M. Tetrahedron Lett. 1967; 3893
    • 2i Barma DK, Kundu A, Baati R, Mioskowski C, Falck JR. Org. Lett. 2002; 4: 1387
    • 3a Brunton L, Lazo J, Keith P. The Pharmacological Basis of Therapeutics . McGraw-Hill; New York: 2005
    • 3b Cadwallader DE. J. Am. Pharm. Assoc. 1975; NS15: 409
    • 4a Tangallapally RP, Lee RE. B, Lenaerts AJ. M, Lee RE. Bioorg. Med. Chem. Lett. 2006; 16: 2584
    • 4b Srivastava V, Negi AS, Kumar JK, Faridu U, Sisodia BS, Darokar MP, Luqman S, Khanuja SP. S. Bioorg. Med. Chem. Lett. 2006; 16: 911
    • 4c Nagaraja GK, Kumaraswamy MN, Vaidya VP, Mahadeven KM. ARKIVOC 2006; (x): 1
    • 4d Sondhi SM, Jain S, Rani R, Kumar A. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2007; 46: 1848
  • 5 Lind P, Carlsson M, Eliasson B, Glimsdal E, Lindgren M, Lopes C, Boman L, Norman P. Mol. Phys. 2009; 107: 629
  • 6 Greco NJ, Tor Y. Tetrahedron 2007; 63: 3515
  • 7 Yamaguchi T, Irie M. J. Mater. Chem. 2006; 16: 4690
  • 8 Lechel T, Dash J, Brudgam I, Reissig HU. Eur. J. Org. Chem. 2008; 3647
    • 9a Dulop AP, Peters FN. The Furans . Reinhold Publishing; Baltimore: 1953: 35
    • 9b Grieco P, Pogonowski C, Burke S. J. Org. Chem. 1975; 40: 542
    • 9c Scott LT, Naples JO. Synthesis 1973; 209
  • 10 Bisagni E, Marquet JP, Bourzat JD, Depin JJ, Andre-Louisfert J. Bull. Chem. Soc. Fr. 1971; 4041
  • 11 Courmier RA, Grosshans CA, Skibbe SL. Synth. Commun. 1988; 7: 677
  • 12 Sammond DM, Sammakia T. Tetrahedron Lett. 1996; 37: 6065
    • 13a Zeni G, Larock RC. Chem. Rev. 2004; 104: 2285
    • 13b Kirsch G, Hesse S, Comel A. Curr. Org. Synth. 2004; 1: 47
    • 13c Marson C, Harper S, Wrigglesworth R. J. Chem. Soc., Chem. Commun. 1994; 1879
  • 14 Mross G, Holtz E, Langer P. J. Org. Chem. 2006; 71: 8045
  • 15 Marshall JA, Bennett C. J. Org. Chem. 1994; 59: 6110
  • 16 Tso HH, Tsay H. Tetrahedron. Lett. 1997; 38: 6869
  • 17 Mortensn DS, Rodriguez AL, Carlson KE, Sun J, Katzenellenbogen BS, Katzenellenbogen JA. J. Med. Chem. 2001; 44: 3838

    • For reviews of site-selective palladium(0)-catalyzed cross-coupling reactions, see:
    • 18a Schröter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
    • 18b Schnürch M, Flasik R, Khan AF, Spina M, Mihovilovic MD, Stanetty P. Eur. J. Org. Chem. 2006; 3283
    • 18c Wang R, Manabe K. Synthesis 2009; 1405
    • 18d For a simple guide for the prediction of the site selectivity of palladium-catalyzed cross-coupling reactions based on 1H NMR data of the nonhalogenated derivatives, see: Handy ST, Zhang Y. Chem. Commun. 2006; 299
    • 19a Bach T, Krüger L. Eur. J. Org. Chem. 1999; 2045
    • 19b Stock C, Höfer F, Bach T. Synlett 2005; 511
    • 19c Carpita A, Rossi R. Tetrahedron 1985; 41: 1919
    • 19d Wellmar U, Hörnfeldt A.-B, Gronowitz S. J. Heterocycl. Chem. 1995; 32: 1159
    • 19e Bach T, Krüger L. Synlett 1998; 1185
    • 19f Bach T, Krüger L. Eur. J. Org. Chem. 1999; 2045
    • 20a Sulikowski GA, Agnelli F, Corbett RM. J. Org. Chem. 2000; 65: 337
    • 20b Bellina F, Falchi E, Rossi R. Tetrahedron 2003; 59: 9091
  • 21 Hussain M, Khera RA, Nguyen TH, Langer P. Org. Biomol. Chem. 2011; 9: 370
  • 22 Dang TT, Dang TT, Rasool N, Villinger A, Langer P. Adv. Synth. Catal. 2009; 351: 1595
    • 23a Neenan TX, Whitesides GM. J. Org. Chem. 1988; 53: 2489
    • 23b For 2,5-di(alkynyl)thiophenes, see: Eichhorn SH, Paraskos AJ, Kishikawa K, Swager TM. J. Am. Chem. Soc. 2002; 124: 12742
  • 24 Ullah F, Dang TT, Heinicke J, Villinger A, Langer P. Synlett 2009; 838
  • 25 Shoppee CW. J. Chem. Soc., Perkin Trans. 1 1985; 45
  • 26 General Procedure for Sonogashira Coupling ReactionsA suspension of tetrabromofuran (1), Pd(PPh3)2Cl2 (10 mol%), CuI (5 mol%) in diisopropylamine was degassed three times in a pressure tube. The acetylene (1.2 equiv per bromine atom) was added using a syringe. The mixture was heated at the indicated temperature (60–80 °C) for 2–4 h. The reaction mixture was filtered and the residue was washed with CH2Cl2. The filtrate was washed with a saturated solution of ammonium chloride (2 x 25 mL), water (2 x 25 mL) and was subsequently dried over anhydrous Na2SO4. The solvent was removed in vacuo. The product was purified by column chromatography (silica gel, EtOAc–heptanes).3,4-Dibromo-2,5-bis[(4-tert-butylphenyl)ethynyl]furan (3a)Starting with 1 (150 mg; 0.40 mmol), 4-tert-butylphenyl-acetylene (2a) (0.16 mL, 0.94 mmol), CuI (5 mol%), Pd(PPh3)2Cl2 (10 mol%), and diisopropylamine (5 mL), 3a was isolated as a white solid (163 mg, 78%); mp 197–199 °C. 1H NMR (300 MHz, CDCl3): δ = 1.36 (s, 18 H, CH3), 7.40 (d, 4 H, J = 8.6 Hz), 7.51 (d, 4 H, J = 8.6 Hz). 13C NMR (75.4 MHz, CDCl3): δ = 31.1 (CH3), 34.9, 81.5, 98.8, 109.3, 118.8 (C), 125.5, 132.3 (CH), 136.7, 152.6 (C). IR (KBr): ν = 2952 (w), 1497 (m), 1461 (m), 1362 (m), 1266 (m), 1102 (m), 1013 (m), 923 (w), 833 (s) cm–1. GC-MS (EI, 70 eV): m/z (%) = 536 (M+, [79Br, 79Br], 30), 538 (M+, [79Br, 81Br], 100), 540 (M+, [81Br, 81Br], 62), 523 (52), 508 (2), 493 (4), 467 (3), 350 (3), 314 (18), 299 (26), 254 (15), 226 (9). HRMS (EI, 70 eV): calcd for C28H26Br2O (M+, [79Br, 79Br]: 536.03449; found 536.03353; calcd for C28H26Br2O (M+, [79Br, 81Br]: 538.03245; found 538.03238; calcd for C28H26Br2O (M+, [81Br, 81Br]: 540.03040; found 540.03176