Semin Plast Surg 2012; 26(01): 018-024
DOI: 10.1055/s-0032-1302461
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Bioprosthetic Mesh in Abdominal Wall Reconstruction

Donald P. Baumann
1   Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Charles E. Butler
1   Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
› Author Affiliations
Further Information

Publication History

Publication Date:
23 February 2012 (online)

Abstract

Mesh materials have undergone a considerable evolution over the last several decades. There has been enhancement of biomechanical properties, improvement in manufacturing processes, and development of antiadhesive laminate synthetic meshes. The evolution of bioprosthetic mesh materials has markedly changed our indications and methods for complex abdominal wall reconstruction. The authors review the optimal properties of bioprosthetic mesh materials, their evolution over time, and their indications for use. The techniques to optimize outcomes are described using bioprosthetic mesh for complex abdominal wall reconstruction. Bioprosthetic mesh materials clearly have certain advantages over other implantable mesh materials in select indications. Appropriate patient selection and surgical technique are critical to the successful use of bioprosthetic materials for abdominal wall repair.

 
  • References

  • 1 Burger JW, Luijendijk RW, Hop WC, Halm JA, Verdaasdonk EG, Jeekel J. Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann Surg 2004; 240 (4) 578-583 , discussion 583–585
  • 2 Flum DR, Horvath K, Koepsell T. Have outcomes of incisional hernia repair improved with time? A population-based analysis. Ann Surg 2003; 237 (1) 129-135
  • 3 Houck JP, Rypins EB, Sarfeh IJ, Juler GL, Shimoda KJ. Repair of incisional hernia. Surg Gynecol Obstet 1989; 169 (5) 397-399
  • 4 Dunne JR, Malone DL, Tracy JK, Napolitano LM. Abdominal wall hernias: risk factors for infection and resource utilization. J Surg Res 2003; 111 (1) 78-84
  • 5 Luijendijk RW, Hop WC, van den Tol MP , et al. A comparison of suture repair with mesh repair for incisional hernia. N Engl J Med 2000; 343 (6) 392-398
  • 6 Pans A, Elen P, Dewé W, Desaive C. Long-term results of polyglactin mesh for the prevention of incisional hernias in obese patients. World J Surg 1998; 22 (5) 479-482 , discussion 482–483
  • 7 den Hartog D, Dur AH, Tuinebreijer WE, Kreis RW. Open surgical procedures for incisional hernias. Cochrane Database Syst Rev 2008; (3) CD006438
  • 8 Korenkov M, Paul A, Sauerland S , et al. Classification and surgical treatment of incisional hernia. Results of an experts’ meeting. Langenbecks Arch Surg 2001; 386 (1) 65-73
  • 9 Harrell AG, Novitsky YW, Peindl RD , et al. Prospective evaluation of adhesion formation and shrinkage of intra-abdominal prosthetics in a rabbit model. Am Surg 2006; 72 (9) 808-813 , discussion 813–814
  • 10 Novitsky YW, Harrell AG, Cristiano JA , et al. Comparative evaluation of adhesion formation, strength of ingrowth, and textile properties of prosthetic meshes after long-term intra-abdominal implantation in a rabbit. J Surg Res 2007; 140 (1) 6-11
  • 11 Bellon JM, Rodriguez M, Garcia-Honduvilla N, Gomez-Gil V, Pascual G, Bujan J. Postimplant behavior of lightweight polypropylene meshes in an experimental model of abdominal hernia. J Invest Surg 2008; 21 (5) 280-287
  • 12 Emans PJ, Schreinemacher MH, Gijbels MJ , et al. Polypropylene meshes to prevent abdominal herniation. Can stable coatings prevent adhesions in the long term?. Ann Biomed Eng 2009; 37 (2) 410-418
  • 13 van ’t Riet M, de Vos van Steenwijk PJ, Bonthuis F , et al. Prevention of adhesion to prosthetic mesh: comparison of different barriers using an incisional hernia model. Ann Surg 2003; 237 (1) 123-128
  • 14 Schug-Pass C, Sommerer F, Tannapfel A, Lippert H, Köckerling F. The use of composite meshes in laparoscopic repair of abdominal wall hernias: are there differences in biocompatibility?: experimental results obtained in a laparoscopic porcine model. Surg Endosc 2009; 23 (3) 487-495
  • 15 Pierce RA, Perrone JM, Nimeri A , et al. 120-day comparative analysis of adhesion grade and quantity, mesh contraction, and tissue response to a novel omega-3 fatty acid bioabsorbable barrier macroporous mesh after intraperitoneal placement. Surg Innov 2009; 16 (1) 46-54
  • 16 Harrell AG, Novitsky YW, Kercher KW , et al. In vitro infectability of prosthetic mesh by methicillin-resistant Staphylococcus aureus . Hernia 2006; 10 (2) 120-124
  • 17 Schreinemacher MH, Emans PJ, Gijbels MJ, Greve JW, Beets GL, Bouvy ND. Degradation of mesh coatings and intraperitoneal adhesion formation in an experimental model. Br J Surg 2009; 96 (3) 305-313
  • 18 de Vries Reilingh TS, van Goor H, Koppe MJ, Bodegom ME, Hendriks T, Bleichrodt RP. Interposition of polyglactin mesh does not prevent adhesion formation between viscera and polypropylene mesh. J Surg Res 2007; 140 (1) 27-30
  • 19 Burger JW, Halm JA, Wijsmuller AR, ten Raa S, Jeekel J. Evaluation of new prosthetic meshes for ventral hernia repair. Surg Endosc 2006; 20 (8) 1320-1325
  • 20 Cobb WS, Kercher KW, Heniford BT. The argument for lightweight polypropylene mesh in hernia repair. Surg Innov 2005; 12 (1) 63-69
  • 21 Holton III LH, Kim D, Silverman RP, Rodriguez ED, Singh N, Goldberg NH. Human acellular dermal matrix for repair of abdominal wall defects: review of clinical experience and experimental data. J Long Term Eff Med Implants 2005; 15 (5) 547-558
  • 22 Butler CE, Prieto VG. Reduction of adhesions with composite AlloDerm/polypropylene mesh implants for abdominal wall reconstruction. Plast Reconstr Surg 2004; 114 (2) 464-473
  • 23 Burns NK, Jaffari MV, Rios CN, Mathur AB, Butler CE. Non-cross-linked porcine acellular dermal matrices for abdominal wall reconstruction. Plast Reconstr Surg 2010; 125 (1) 167-176
  • 24 Gobin AS, Butler CE, Mathur AB. Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend. Tissue Eng 2006; 12 (12) 3383-3394
  • 25 Holton III LH, Chung T, Silverman RP , et al. Comparison of acellular dermal matrix and synthetic mesh for lateral chest wall reconstruction in a rabbit model. Plast Reconstr Surg 2007; 119 (4) 1238-1246
  • 26 Sandor M, Xu H, Connor J , et al. Host response to implanted porcine-derived biologic materials in a primate model of abdominal wall repair. Tissue Eng Part A 2008; 14 (12) 2021-2031
  • 27 Jarman-Smith ML, Bodamyali T, Stevens C, Howell JA, Horrocks M, Chaudhuri JB. Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation. J Mater Sci Mater Med 2004; 15 (8) 925-932
  • 28 Butler CE, Burns NK, Campbell KT, Mathur AB, Jaffari MV, Rios CN. Comparison of cross-linked and non-cross-linked porcine acellular dermal matrices for ventral hernia repair. J Am Coll Surg 2010; 211 (3) 368-376
  • 29 Glasberg SB, D’Amico RA. Use of regenerative human acellular tissue (AlloDerm) to reconstruct the abdominal wall following pedicle TRAM flap breast reconstruction surgery. Plast Reconstr Surg 2006; 118 (1) 8-15
  • 30 Nemeth NL, Butler CE. Complex torso reconstruction with human acellular dermal matrix: long-term clinical follow-up. Plast Reconstr Surg 2009; 123 (1) 192-196
  • 31 Hagström P, Nylén B. Repair of incisional hernias and defects in the anterior abdominal wall using dermal grafts. Case report. Scand J Plast Reconstr Surg 1976; 10 (2) 157-158
  • 32 Fogh-Andersen P. Repair of monstrous ventral hernias with buried dermis or whole skin grafts. Acta Chir Scand 1963; 126: 466-473
  • 33 Jarvis GJ, Fowlie A. Clinical and urodynamic assessment of the porcine dermis bladder sling in the treatment of genuine stress incontinence. Br J Obstet Gynaecol 1985; 92 (11) 1189-1191
  • 34 Kim JY, Bullocks JM, Basu CB , et al. Dermal composite flaps reconstructed from acellular dermis: a novel method of neourethral reconstruction. Plast Reconstr Surg 2005; 115 (7) 96e-100e
  • 35 Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R. Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 2002; 103 (2) 190-202
  • 36 Sheridan RL, Choucair RJ. Acellular allogenic dermis does not hinder initial engraftment in burn wound resurfacing and reconstruction. J Burn Care Rehabil 1997; 18 (6) 496-499
  • 37 Tufaro AP, Buck II DW, Fischer AC. The use of artificial dermis in the reconstruction of oncologic surgical defects. Plast Reconstr Surg 2007; 120 (3) 638-646
  • 38 Sullivan SA, Dailey RA. Graft contraction: a comparison of acellular dermis versus hard palate mucosa in lower eyelid surgery. Ophthal Plast Reconstr Surg 2003; 19 (1) 14-24
  • 39 Bellows CF, Alder A, Helton WS. Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Expert Rev Med Devices 2006; 3 (5) 657-675
  • 40 Kim H, Bruen K, Vargo D. Acellular dermal matrix in the management of high-risk abdominal wall defects. Am J Surg 2006; 192 (6) 705-709
  • 41 Diaz Jr JJ, Guy J, Berkes MB, Guillamondegui O, Miller RS. Acellular dermal allograft for ventral hernia repair in the compromised surgical field. Am Surg 2006; 72 (12) 1181-1187 , discussion 1187–1188
  • 42 Patton Jr JH, Berry S, Kralovich KA. Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions. Am J Surg 2007; 193 (3) 360-363 , discussion 363
  • 43 Butler CE, Langstein HN, Kronowitz SJ. Pelvic, abdominal, and chest wall reconstruction with AlloDerm in patients at increased risk for mesh-related complications. Plast Reconstr Surg 2005; 116 (5) 1263-1275 , discussion 1276–1277
  • 44 Campbell A, Chang M, Fabian T , et al; Open Abdomen Advisory Panel. Management of the open abdomen: from initial operation to definitive closure. Am Surg 2009; 75 (11, Suppl) S1-S22
  • 45 Sarikaya A, Record R, Wu CC, Tullius B, Badylak S, Ladisch M. Antimicrobial activity associated with extracellular matrices. Tissue Eng 2002; 8 (1) 63-71
  • 46 Badylak SF, Coffey AC, Lantz GC, Tacker WA, Geddes LA. Comparison of the resistance to infection of intestinal submucosa arterial autografts versus polytetrafluoroethylene arterial prostheses in a dog model. J Vasc Surg 1994; 19 (3) 465-472
  • 47 Milburn ML, Holton LH, Chung TL , et al. Acellular dermal matrix compared with synthetic implant material for repair of ventral hernia in the setting of peri-operative Staphylococcus aureus implant contamination: a rabbit model. Surg Infect (Larchmt) 2008; 9 (4) 433-442
  • 48 Orenstein SB, Qiao Y, Klueh U, Kreutzer DL, Novitsky YW. Activation of human mononuclear cells by porcine biologic meshes in vitro. Hernia 2010; 14 (4) 401-407
  • 49 Jin J, Rosen MJ, Blatnik J , et al. Use of acellular dermal matrix for complicated ventral hernia repair: does technique affect outcomes?. J Am Coll Surg 2007; 205 (5) 654-660
  • 50 Breuing K, Butler CE, Ferzoco S , et al; Ventral Hernia Working Group. Incisional ventral hernias: review of the literature and recommendations regarding the grading and technique of repair. Surgery 2010; 148 (3) 544-558
  • 51 Sandor M, Xu H, Connor J , et al. Host response to implanted porcine-derived biologic materials in a primate model of abdominal wall repair. Tissue Eng Part A 2008; 14 (12) 2021-2031